Skip to main content

Interactive effects of Epichloë fungal and host origins on the seed germination of Achnatherum inebrians

Abstract

Cool-season grasses have developed a symbiotic relationship with Epichloë endophytes. In many environments, Epichloë endophytes have been shown to be mutualistic symbionts of plants by increasing the fitness of their host against abiotic or biotic stresses. The effects of Epichloë endophytes on other fitness-correlated plant characteristics are less intensively studied, and the results are usually variable and contradictory. In this study, we evaluated the effects of endophyte infection on seed germination in Achnatherum inebrians from four origins. Our results indicate that the germination rate of the seeds collected from alpine regions was higher at low temperatures than that of seeds with desert and arid grassland origins. By contrast, a higher germination percentage was detected in seeds with desert and arid grassland origins than in those with alpine origins in higher temperatures. Epichloë endophyte infection affects the cardinal temperatures of seeds from different origins. Endophyte-infected seeds have a lower base temperature and a higher ceiling temperature than their endophyte-free counterparts. The value of the base temperature was higher in seeds with alpine grassland origins than in those with desert and arid grassland origins. However, the ceiling temperature was higher in seeds with desert and arid grassland origins than in those with alpine grassland origins. Consequently, future experiments should consider the effects of endophytes on seed germination and seedling recruitment in suboptimal climatic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25:1061–1069

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–141

    Article  Google Scholar 

  • Bacon CW, White JF (1994) Microbial Endophytes. Marcel Dekker, New York, pp 341–388

  • Bao GS, Saikkonen K, Wang HS, Zhou LY, Chen SH, Li CJ, Nan ZB (2015) Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland? Fungal Ecol 17:114–125

    Article  Google Scholar 

  • Batlla D, Benech-Arnold RL (2014) Weed seed germination and the light environment: implications for weed management. Weed Biol Manag 14:77–87

    Article  Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260

    Article  CAS  Google Scholar 

  • Brem D, Leuchtmann A (2001) Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530

    Article  CAS  PubMed  Google Scholar 

  • Bu HY, Du GZ, Chen XL, Xu XL, Liu K, Wen SJ (2008) Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecol 195:87–98

    Article  Google Scholar 

  • Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li XZ, Li CJ, Swoboda GA, Young CA, Sugawara K, Leuchtmann A, Schardl CL (2015) Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107:863–873

  • Chen N, He RL, Chai Q, Li CJ, Nan ZB (2016) Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant Growth Regul 80:367–375

    Article  CAS  Google Scholar 

  • Cheplick GP (1997) Effects of endophytic fungi on the phenotypic plasticity of Lolium perenne (Poaceae). Am J Bot 84:34–40

    Article  Google Scholar 

  • Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362

    Article  CAS  PubMed  Google Scholar 

  • Cochrane A, Hoyle GL, Yates CJ, Wood J, Nicotra AB (2014) Predicting the impact of increasing temperatures on seed germination among populations of Western Australian Banksia (Proteaceae). Seed Sci Res 24:195–205

    Article  Google Scholar 

  • Cook R, Lewis G, Mizen K (1991) Effects on plant-parasitic nematodes of infection of perennial ryegrass, Lolium perenne, by the endophytic fungus, Acremonium lolii. Crop Prot 10:403–407

    Article  Google Scholar 

  • Cui X, Graf HF (2009) Recent land cover changes on the Tibetan plateau: a review. Clim Chang 94:47–61

    Article  Google Scholar 

  • Ellis R, Butcher P (1988) The effects of priming and ‘natural’differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. J Exp Bot 39:935–950

    Article  Google Scholar 

  • Ellis R, Covell S, Roberts E, Summerfield R (1986) The influence of temperature on seed germination rate in grain legumes: II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. J Exp Bot 37:1503–1515

    Article  Google Scholar 

  • Ellis R, Simon G, Covell S (1987) The influence of temperature on seed germination rate in grain legumes: III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. J Exp Bot 38:1033–1043

    Article  Google Scholar 

  • Estrelles E, Güemes J, Riera J, Boscaiu M, Ibars AM, Costa M (2010) Seed germination behaviour in Sideritis from different Iberian habitats. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:9–13

    Article  Google Scholar 

  • Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313

    Article  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fortunel C, Paine CET, Fine PVA, Kraft NJB, Baraloto C (2014) Environmental factors predict community functional composition in Amazonian forests. J Ecol 102:145–155

    Article  Google Scholar 

  • Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol 29:52–58

    Article  Google Scholar 

  • Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Advances in Botany 2014:1–17

    Article  Google Scholar 

  • Gundel PE, Maseda PH, Ghersa CM, Benech-Arnolo R (2006a) Effects of the Neotyphodium endophyte fungus on dormancy and germination rate of Lolium multiflorum seeds. Austral Ecol 31:767–775

    Article  Google Scholar 

  • Gundel PE, Maseda PH, Vila-Aiub MM, Ghersa CM, Benech-Arnold R (2006b) Effects of Neotyphodium fungi on Lolium multiflorum seed germination in relation to water availability. Ann Bot-london 97:571–577

    Article  CAS  Google Scholar 

  • Gundel PE, Zabalgogeazcoa I, De Aldana BV (2011) Interaction between plant genotype and the symbiosis with Epichloë fungal endophytes in seeds of red fescue (Festuca rubra). Crop Pasture Sci 62:1010–1016

    Article  CAS  Google Scholar 

  • Gundel PE, Martínez-Ghersa MA, Ghersa CM (2012) Threshold modelling Lolium multiflorum seed germination: effects of Neotyphodium endophyte infection and storage environment. Seed Sci Technol 40:51–62

    Article  Google Scholar 

  • Hardegree SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann Bot-london 97:1115–1125

    Article  Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415

    Article  Google Scholar 

  • Hu XW, Zhou ZQ, Li TS, Wu YP, Wang YR (2013) Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the loess plateau of northwestern China. Ecol Res 28:801–809

    Article  Google Scholar 

  • Hu XW, Fan Y, Baskin CC, Baskin JM, Wang YR (2015) Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am J Bot 102:649–660

    Article  PubMed  Google Scholar 

  • Iannone L, Pinget A, Nagabhyru P, Schardl C, De Battista J (2012) Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci 67:382–390

    Article  Google Scholar 

  • ISTA (2009) International rules for seed testing, 2009th edn. International Seed Testing Association, Switzerland

  • Kauppinen M, Saikkonen K, Helander M, Pirttilä AM, Wäli PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat plants 2:15224

    Article  PubMed  Google Scholar 

  • Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y (2004) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141–147

    Google Scholar 

  • Li CJ, Gao JH, Nan ZB (2007) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Mycol Res 111:1220–1227

    Article  PubMed  Google Scholar 

  • Liu W, Liu K, Zhang CH, Du GZ (2011) Effect of accumulated temperature on seed germination: a case study of 12 Compositae species on the eastern Qinghai-Tibetan of China. Chinese Journal of Plant Ecology 35:751–758 (in Chinese with English abstract)

  • Ma MZ, Christensen MJ, Nan ZB (2015) Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur J Plant Pathol 141:571–583

    Article  CAS  Google Scholar 

  • Madej CW, Clay K (1991) Avian seed preference and weight loss experiments: the effect of fungal endophyte-infected tall fescue seeds. Oecologia 88:296–302

    Article  PubMed  Google Scholar 

  • McCulley RL, Bush LP, Carlisle AE, Ji H, Nelson JA (2014) Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S. Front Chem 2:1–14

    Article  CAS  Google Scholar 

  • Morse L, Faeth SH, Day T (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Funct Ecol 21:813–822

    Article  Google Scholar 

  • Novas MV, Gentile A, Cabral D (2003) Comparative study of growth parameters on diaspores and seedlings between populations of Bromus setifolius from Patagonia, differing in Neotyphodium endophyte infection. Flora 198:421–426

    Article  Google Scholar 

  • Oberhofer M, Güsewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253

    Article  PubMed  Google Scholar 

  • Pańka D, West C, Guerber C, Richardson M (2013) Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Ann Appl Biol 163:257–268

    Article  Google Scholar 

  • Parmoon G, Moosavi SA, Akbari H, Ebadi A (2015) Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal 3:145–151

  • Pérez-García F, Hornero J, González-Benito ME (2003) Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Isr J Plant Sci 51:117–124

    Article  Google Scholar 

  • Phartyal SS, Thapliyal RC, Nayal JS, Rawatm MMS, JoshiI G (2003) The influences of temperatures on seed germination rate in Himalayan elm (Ulmus wallichiana). Seed Sci Technol 31:83–93

    Article  Google Scholar 

  • Pinkerton B, Rice J, Undersander D (1990) Germination in Festuca arundinacea as affected by the fungal endophyte, Acremonium coenophialum. In: Proceedings of an international symposium on Acremonium/grass interactions. New Orleans

  • Saikkonen K, Faeth SH, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

  • Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. P Roy Soc B-Biol Sci 269:1397–1403

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Phillips TD, Faeth SH, McCulley RL, Saloniemi I, Helander M (2016a) Performance of endophyte infected tall fescue in Europe and North America. PLoS One 11:e0157382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Young CA, Helander M, Schardl CL (2016b) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665–675

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    Article  CAS  PubMed  Google Scholar 

  • Schutte BJ, Regnier EE, Harrison SK, Schmoll JT, Spokas K, Forcella F (2008) A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci 56:555–560

    Article  CAS  Google Scholar 

  • Shiba T, Arakawa A, Sugawara K (2015) Effects of alkaloids from fungal endophytes in grass–Epichloë associations on survival of the sorghum plant bug (Stenotus rubrovittatus). Grassl Sci 61:24–27

    Article  CAS  Google Scholar 

  • Song ML, Chai Q, Li XZ, Yao X, Li CJ, Christensen MJ, Nan ZB (2015a) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165

    Article  CAS  Google Scholar 

  • Song ML, Li XZ, Saikkonen K, Li CJ, Nan ZB (2015b) An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–52

    Article  Google Scholar 

  • Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51:275–286

    Article  CAS  PubMed  Google Scholar 

  • Tadych M, Ambrose KV, Bergen MS, Belanger FC, White JF (2012) Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers 54:117–131

    Article  Google Scholar 

  • Tobe K, Zhang LP, Omasa K (2006) Seed germination and seedling emergence of three Artemisia species (Asteraceae) inhabiting desert sand dunes in China. Seed Sci Res 16:61–69

    Article  Google Scholar 

  • Trudgill D, Squire G, Thompson K (2000) A thermal time basis for comparing the germination requirements of some British herbaceous plants. New Phytol 145:107–114

    Article  Google Scholar 

  • Vázquez de Aldana BR, Gundel PE, García Criado B, García Ciudad A, García Sánchez A, Zabalgogeazcoa I (2014) Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci 69:462–469

    Article  CAS  Google Scholar 

  • Wäli PR, Helander M, Saloniemi I, Ahlholm J, Saikkonen K (2009) Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia 159:49–57

    Article  PubMed  Google Scholar 

  • Wang MY, Liu W, Liu K, Bu HY (2011) The base temperature and the thermal time requirement for seed germination of 10 grass species on the eastern Qinghai-Tibet plateau. Pratacultural Science 28:983–987 (in Chinese with English abstract)

    Google Scholar 

  • Welty RE, Craig AM, Azevedo MD (1994) Variability of ergovaline in seeds and straw and endophyte infection in seeds among endophyte-infected genotypes of tall fescue. Plant Dis 78:845–849

    Article  CAS  Google Scholar 

  • White Jr JF, Cole GT (1985) Endophyte-host associations in forage grasses. III. In vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487-489

  • Zhang XX, Fan XM, Li CJ, Nan ZB (2010a) Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul 60:91–97

    Article  CAS  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB (2010b) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB, Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78

    Article  Google Scholar 

  • Zhao XY, Ren JZ, Wang YR, Li YM (2005) Germination responses to temperature and moisture in seed from three species of Caragana. Acta Botan Boreali-Occiden Sin 25:211–217 (in Chinese with English abstract)

    Google Scholar 

  • Zhou LY, Li CJ, Zhang XX, Johnson R, Bao GS, Yao X, Chai Q (2015) Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol 14:99–104

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Xiaowen Hu and Carol C. Baskin for their constructive suggestions in interpreting the results of the study and Ph.D. students Xiuzhang Li and Xuekai Wei for providing technical support. This research was financially supported by the Natural Science Foundation of China (31660690, 31700098), the Program for Qinghai Province Thousand Talent Innovative Plan, Key Laboratory of Superior Forage Germplasm in the Qinghai Tibetan Plateau (2017-ZJ-Y12) and the Academy of Finland (grant nos. 295976 and 326226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gensheng Bao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 18 kb)

Fig. S1

Molecular phylogeny derived from the maximum likelihood analysis of introns of the tefA gene from related Epichloë species and Achnatherum inebrians seeds originating from Dy, Td, Tl and Al. The tree was rooted with Claviceps purpurea 20.1 as the outgroup. The percentage of trees in which associated taxa are clustered together is shown next to the branches. The three gene copies in the hybrid endophyte, Epichloë coenophiala, are labeled with single-letter abbreviations of the extant Epichloë species related to its three ancestors. (JPG 939 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, G., Song, M., Wang, Y. et al. Interactive effects of Epichloë fungal and host origins on the seed germination of Achnatherum inebrians. Symbiosis 79, 49–58 (2019). https://doi.org/10.1007/s13199-019-00636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00636-0

Keywords

  • Endophyte
  • Achnatherum inebrians
  • Seed germination
  • Habitat
  • Temperature
  • Thermal time model