Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25:1061–1069
Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–141
Article
Google Scholar
Bacon CW, White JF (1994) Microbial Endophytes. Marcel Dekker, New York, pp 341–388
Bao GS, Saikkonen K, Wang HS, Zhou LY, Chen SH, Li CJ, Nan ZB (2015) Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland? Fungal Ecol 17:114–125
Article
Google Scholar
Batlla D, Benech-Arnold RL (2014) Weed seed germination and the light environment: implications for weed management. Weed Biol Manag 14:77–87
Article
Google Scholar
Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260
Article
CAS
Google Scholar
Brem D, Leuchtmann A (2001) Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530
Article
CAS
PubMed
Google Scholar
Bu HY, Du GZ, Chen XL, Xu XL, Liu K, Wen SJ (2008) Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecol 195:87–98
Article
Google Scholar
Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289
Article
CAS
PubMed
Google Scholar
Chen L, Li XZ, Li CJ, Swoboda GA, Young CA, Sugawara K, Leuchtmann A, Schardl CL (2015) Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107:863–873
Chen N, He RL, Chai Q, Li CJ, Nan ZB (2016) Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant Growth Regul 80:367–375
Article
CAS
Google Scholar
Cheplick GP (1997) Effects of endophytic fungi on the phenotypic plasticity of Lolium perenne (Poaceae). Am J Bot 84:34–40
Article
Google Scholar
Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93
Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362
Article
CAS
PubMed
Google Scholar
Cochrane A, Hoyle GL, Yates CJ, Wood J, Nicotra AB (2014) Predicting the impact of increasing temperatures on seed germination among populations of Western Australian Banksia (Proteaceae). Seed Sci Res 24:195–205
Article
Google Scholar
Cook R, Lewis G, Mizen K (1991) Effects on plant-parasitic nematodes of infection of perennial ryegrass, Lolium perenne, by the endophytic fungus, Acremonium lolii. Crop Prot 10:403–407
Article
Google Scholar
Cui X, Graf HF (2009) Recent land cover changes on the Tibetan plateau: a review. Clim Chang 94:47–61
Article
Google Scholar
Ellis R, Butcher P (1988) The effects of priming and ‘natural’differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. J Exp Bot 39:935–950
Article
Google Scholar
Ellis R, Covell S, Roberts E, Summerfield R (1986) The influence of temperature on seed germination rate in grain legumes: II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. J Exp Bot 37:1503–1515
Article
Google Scholar
Ellis R, Simon G, Covell S (1987) The influence of temperature on seed germination rate in grain legumes: III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. J Exp Bot 38:1033–1043
Article
Google Scholar
Estrelles E, Güemes J, Riera J, Boscaiu M, Ibars AM, Costa M (2010) Seed germination behaviour in Sideritis from different Iberian habitats. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:9–13
Article
Google Scholar
Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313
Article
Google Scholar
Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge
Book
Google Scholar
Fortunel C, Paine CET, Fine PVA, Kraft NJB, Baraloto C (2014) Environmental factors predict community functional composition in Amazonian forests. J Ecol 102:145–155
Article
Google Scholar
Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol 29:52–58
Article
Google Scholar
Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Advances in Botany 2014:1–17
Article
Google Scholar
Gundel PE, Maseda PH, Ghersa CM, Benech-Arnolo R (2006a) Effects of the Neotyphodium endophyte fungus on dormancy and germination rate of Lolium multiflorum seeds. Austral Ecol 31:767–775
Article
Google Scholar
Gundel PE, Maseda PH, Vila-Aiub MM, Ghersa CM, Benech-Arnold R (2006b) Effects of Neotyphodium fungi on Lolium multiflorum seed germination in relation to water availability. Ann Bot-london 97:571–577
Article
CAS
Google Scholar
Gundel PE, Zabalgogeazcoa I, De Aldana BV (2011) Interaction between plant genotype and the symbiosis with Epichloë fungal endophytes in seeds of red fescue (Festuca rubra). Crop Pasture Sci 62:1010–1016
Article
CAS
Google Scholar
Gundel PE, Martínez-Ghersa MA, Ghersa CM (2012) Threshold modelling Lolium multiflorum seed germination: effects of Neotyphodium endophyte infection and storage environment. Seed Sci Technol 40:51–62
Article
Google Scholar
Hardegree SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann Bot-london 97:1115–1125
Article
Google Scholar
Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415
Article
Google Scholar
Hu XW, Zhou ZQ, Li TS, Wu YP, Wang YR (2013) Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the loess plateau of northwestern China. Ecol Res 28:801–809
Article
Google Scholar
Hu XW, Fan Y, Baskin CC, Baskin JM, Wang YR (2015) Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am J Bot 102:649–660
Article
PubMed
Google Scholar
Iannone L, Pinget A, Nagabhyru P, Schardl C, De Battista J (2012) Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci 67:382–390
Article
Google Scholar
ISTA (2009) International rules for seed testing, 2009th edn. International Seed Testing Association, Switzerland
Kauppinen M, Saikkonen K, Helander M, Pirttilä AM, Wäli PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat plants 2:15224
Article
PubMed
Google Scholar
Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y (2004) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141–147
Google Scholar
Li CJ, Gao JH, Nan ZB (2007) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Mycol Res 111:1220–1227
Article
PubMed
Google Scholar
Liu W, Liu K, Zhang CH, Du GZ (2011) Effect of accumulated temperature on seed germination: a case study of 12 Compositae species on the eastern Qinghai-Tibetan of China. Chinese Journal of Plant Ecology 35:751–758 (in Chinese with English abstract)
Ma MZ, Christensen MJ, Nan ZB (2015) Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur J Plant Pathol 141:571–583
Article
CAS
Google Scholar
Madej CW, Clay K (1991) Avian seed preference and weight loss experiments: the effect of fungal endophyte-infected tall fescue seeds. Oecologia 88:296–302
Article
PubMed
Google Scholar
McCulley RL, Bush LP, Carlisle AE, Ji H, Nelson JA (2014) Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S. Front Chem 2:1–14
Article
CAS
Google Scholar
Morse L, Faeth SH, Day T (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Funct Ecol 21:813–822
Article
Google Scholar
Novas MV, Gentile A, Cabral D (2003) Comparative study of growth parameters on diaspores and seedlings between populations of Bromus setifolius from Patagonia, differing in Neotyphodium endophyte infection. Flora 198:421–426
Article
Google Scholar
Oberhofer M, Güsewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253
Article
PubMed
Google Scholar
Pańka D, West C, Guerber C, Richardson M (2013) Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Ann Appl Biol 163:257–268
Article
Google Scholar
Parmoon G, Moosavi SA, Akbari H, Ebadi A (2015) Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal 3:145–151
Pérez-García F, Hornero J, González-Benito ME (2003) Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Isr J Plant Sci 51:117–124
Article
Google Scholar
Phartyal SS, Thapliyal RC, Nayal JS, Rawatm MMS, JoshiI G (2003) The influences of temperatures on seed germination rate in Himalayan elm (Ulmus wallichiana). Seed Sci Technol 31:83–93
Article
Google Scholar
Pinkerton B, Rice J, Undersander D (1990) Germination in Festuca arundinacea as affected by the fungal endophyte, Acremonium coenophialum. In: Proceedings of an international symposium on Acremonium/grass interactions. New Orleans
Saikkonen K, Faeth SH, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343
Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. P Roy Soc B-Biol Sci 269:1397–1403
Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280
Article
CAS
PubMed
Google Scholar
Saikkonen K, Phillips TD, Faeth SH, McCulley RL, Saloniemi I, Helander M (2016a) Performance of endophyte infected tall fescue in Europe and North America. PLoS One 11:e0157382
Article
CAS
PubMed
PubMed Central
Google Scholar
Saikkonen K, Young CA, Helander M, Schardl CL (2016b) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665–675
Article
CAS
PubMed
Google Scholar
Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82
Article
CAS
PubMed
Google Scholar
Schutte BJ, Regnier EE, Harrison SK, Schmoll JT, Spokas K, Forcella F (2008) A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci 56:555–560
Article
CAS
Google Scholar
Shiba T, Arakawa A, Sugawara K (2015) Effects of alkaloids from fungal endophytes in grass–Epichloë associations on survival of the sorghum plant bug (Stenotus rubrovittatus). Grassl Sci 61:24–27
Article
CAS
Google Scholar
Song ML, Chai Q, Li XZ, Yao X, Li CJ, Christensen MJ, Nan ZB (2015a) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165
Article
CAS
Google Scholar
Song ML, Li XZ, Saikkonen K, Li CJ, Nan ZB (2015b) An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–52
Article
Google Scholar
Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51:275–286
Article
CAS
PubMed
Google Scholar
Tadych M, Ambrose KV, Bergen MS, Belanger FC, White JF (2012) Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers 54:117–131
Article
Google Scholar
Tobe K, Zhang LP, Omasa K (2006) Seed germination and seedling emergence of three Artemisia species (Asteraceae) inhabiting desert sand dunes in China. Seed Sci Res 16:61–69
Article
Google Scholar
Trudgill D, Squire G, Thompson K (2000) A thermal time basis for comparing the germination requirements of some British herbaceous plants. New Phytol 145:107–114
Article
Google Scholar
Vázquez de Aldana BR, Gundel PE, García Criado B, García Ciudad A, García Sánchez A, Zabalgogeazcoa I (2014) Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci 69:462–469
Article
CAS
Google Scholar
Wäli PR, Helander M, Saloniemi I, Ahlholm J, Saikkonen K (2009) Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia 159:49–57
Article
PubMed
Google Scholar
Wang MY, Liu W, Liu K, Bu HY (2011) The base temperature and the thermal time requirement for seed germination of 10 grass species on the eastern Qinghai-Tibet plateau. Pratacultural Science 28:983–987 (in Chinese with English abstract)
Google Scholar
Welty RE, Craig AM, Azevedo MD (1994) Variability of ergovaline in seeds and straw and endophyte infection in seeds among endophyte-infected genotypes of tall fescue. Plant Dis 78:845–849
Article
CAS
Google Scholar
White Jr JF, Cole GT (1985) Endophyte-host associations in forage grasses. III. In vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487-489
Zhang XX, Fan XM, Li CJ, Nan ZB (2010a) Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul 60:91–97
Article
CAS
Google Scholar
Zhang XX, Li CJ, Nan ZB (2010b) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709
Article
CAS
PubMed
Google Scholar
Zhang XX, Li CJ, Nan ZB, Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78
Article
Google Scholar
Zhao XY, Ren JZ, Wang YR, Li YM (2005) Germination responses to temperature and moisture in seed from three species of Caragana. Acta Botan Boreali-Occiden Sin 25:211–217 (in Chinese with English abstract)
Google Scholar
Zhou LY, Li CJ, Zhang XX, Johnson R, Bao GS, Yao X, Chai Q (2015) Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol 14:99–104
Article
Google Scholar