Skip to main content

Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii

Abstract

The phenolic, flavonoid, tannin and proanthocyanidin content of the lichen Cladonia foliacea with and without its lichenicolous fungus Heterocephalacria (Syzygospora) bachmannii was investigated. The phenolic compounds were quantified in organic extracts using ultrasonic extraction (acetone and methanol) and in milled material (the ground material diluted with microcrystalline cellulose). The total phenolic content depended on the solvent polarity, the extraction technique and the species. The results demonstrated that the highest total phenolic content was recorded in untreated milled material (935.75 μg GAE/g DW) of H. bachmannii plus C. foliacea, followed by C. foliacea (668.29 μg GAE/g DW). The antioxidant activities were evaluated by the in vitro scavenging capacity, iron reducing power, and iron chelating power. The results showed that the highest scavenging capacity were obtained in methanol extracts of C. foliacea with IC50 = 0.015 mg/mL, followed by methanolic extract of H. bachmannii plus C. foliacea that had a scavenging capacity and iron reducing power of (IC50 = 0.030 mg/mL and IC50 = 0.054 mg/mL, respectively). The milled material showed the highest iron chelating power (IC50 = 0.279 mg/mL). We conclude that Cladonia foliacea when parasitized by H. bachmannii possesses a high antioxidant potential in the methanolic extract. Acetone and methanol extracts, showed that extracts from lichen plus lichenicolous fungus contained different and possibly more effective bioactive molecules than the lichen alone. These included phenolic acids, alkanes and aromatic compounds. This is the first study to investigate the phenolic content and antioxidant capacity of a lichenicolous fungus, albeit based on differences between the lichen with and without the mycoparasite H. bachmannii .

This is a preview of subscription content, access via your institution.

References

  • Ahti T (2000) Cladoniaceae. Flora Neotropica Monogr 78:1–363

    Google Scholar 

  • Ahti T, Stenroos S (2013) Cladoniaceae. In: Ahti T, Stenroos S, Moberg R (eds) Nordic Lichen Flora, vol 5. Museum of Evolution, Uppsala University, Uppsala

    Google Scholar 

  • Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G (2013) The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health 32:721–729

    Article  PubMed  Google Scholar 

  • Chemat F, Huma Z, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  PubMed  Google Scholar 

  • Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  PubMed  Google Scholar 

  • Diederich P (1996) The lichenicolous heterobasidiomycetes. Bibliotheca Lichenologica 61:1–198

    Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • Ginns J (1986) The genus Syzygospora (Heterobasidiomycetes: Syzygosporaceae). Mycologia 78:619–636

    Article  Google Scholar 

  • Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Food Sci Technol 20:278–288

    Article  CAS  Google Scholar 

  • Gulcin I, Kurfrevioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  • Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licore root: their relative astringency and radical scavenging affects. Chem Pharm Bull 36:2090–2097

    Article  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  PubMed  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer Verlag, Berlin

    Book  Google Scholar 

  • Kellogg J, Raja HA (2017) Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev 16:271–293

    Article  CAS  Google Scholar 

  • Kosanić M, Ranković B, Sukdolak S (2010) Antimicrobial activity of the lichens Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr J Microbiol Res 4:885–890

    Google Scholar 

  • Kosanić M, Ranković B, Stanojković T (2012) Antioxidant, antimicrobial, and anticancer activities of three Parmelia species. J Sci Food Agric 92:1909–1916

    Article  CAS  PubMed  Google Scholar 

  • Lawrey JD (1993) Chemical ecology of Hobsonia christiansenii, a lichenicolous hyphomycete. Am J Bot 80:1109–1113

    Article  CAS  Google Scholar 

  • Lawrey JD (1999) Chemical interactions between two lichen-degrading fungi. J Chem Ecol 26:1821–1831

    Article  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Maksimovic Z, Malencic D, Kovacevic N (2005) Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour Technol 96:873–877

    Article  CAS  PubMed  Google Scholar 

  • Merinero S, Bidussi M, Gauslaa Y (2015) Do lichen secondary compounds play a role in highly specific fungal parasitism? Fungal Ecol 14:125–129

    Article  Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacine-induced gastric ulcer in rats. J Ethnopharmacol 103(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction-antioxidative activities of products of Browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Padhi S, Tayung K (2015) In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens. Beni-Suef Univ J Basic Appl Sci 4:299–306

    Article  Google Scholar 

  • Patlevič P, Vašková J, Švorc P, Vaško L, Švorc P (2016) Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative Med Res 5:250–258

    Article  Google Scholar 

  • Pèrez-Jimènez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040

    Article  CAS  PubMed  Google Scholar 

  • Pino-Bodas R, Laakso I, Stenroos S (2017) Genetic variation and factors affecting the genetic structure of the lichenicolous fungus Heterocephalacria bachmannii (Filobasidiales, Basidiomycota). PLoS One 12(12):1–22

    Article  CAS  Google Scholar 

  • Pino-Bodas R, Burgaz AR, Ahti T, Stenroos S (2018) Taxonomy of Cladonia angustiloba and related species. Lichenologist 50:267–282

    Article  Google Scholar 

  • Ranković BR, Kosanić MM, Stanojković TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Complement Altern Med 11:1–8

    Article  CAS  Google Scholar 

  • Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Zhurbenko M, Pino-Bodas R (2017) Lichenicolous fungi growing on Cladonia, mainly from the northern hemisphere, with a worldwide key to the known species. Opuscula Philolichenum 16:188–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. D. Seaward.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khadhri, A., Mendili, M., Araújo, M.E.M. et al. Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii. Symbiosis 79, 25–31 (2019). https://doi.org/10.1007/s13199-019-00630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00630-6

Keywords

  • Antioxidant capacity
  • FTIR
  • 1H NMR
  • Phenolic compounds
  • QUENCHER approach
  • Secondary metabolites
  • Syzygospora bachmannii
  • Tunisia