Skip to main content

Advertisement

Log in

Proteomic evaluation of the freshly isolated cyanobionts from Azolla microphylla exposed to salinity stress

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The cyanobiont Anabaena azollae performs nitrogen fixation in the agronomically important Azolla-Anabaena system. However, the response of the cyanobiont to salinity has not been studied at the molecular level. In the present study Azolla microphylla plants were exposed to salinity (90 mM NaCl) for 3 days and the cyanobionts have been isolated. The proteome profile of the freshly isolated cyanobionts were investigated by Two dimensional gel electrophoresis (2DE) followed by MALDI-TOF-MS/MS analysis. Sixty eight protein spots showed significant changes in response to salinity treatment and out of those proteins, 18 protein spots were identified. Among them 12 proteins were up regulated whereas 6 proteins were down regulated. Up regulation of important proteins related to protein synthesis and cell signaling may be involved in the response of the cyanobiont to adapt to short term salinity exposure. The study might help in understanding the biological processes and stress proteins involved in salinity stress adaptation in the cyanobiont A. azollae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal C, Sen S, Singh S, Rai S, Singh PK, Rai LC (2014) Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2 fixing Anabaena sp. J Proteome 96:271–290

    Article  CAS  Google Scholar 

  • Alifano P, Fani R, Liu P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60:44–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battchikova N, Eisenhut M, Aro E (2010) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 1807:935–944

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. https://doi.org/10.1038/35140

    Article  CAS  PubMed  Google Scholar 

  • Bhargawa P, Kumar A, Mishra Y, Rai LC (2008) Copper pretreatment augments ultraviolet B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cell death. Fun Pl Biol 35:360–372

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–227

    Article  CAS  PubMed  Google Scholar 

  • Caldas TD, Yaagaubia AE, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482

    Article  CAS  PubMed  Google Scholar 

  • Chris A, Zeeshan M, Abraham G, Prasad SM (2006) NaCl induced proline accumulation counteract the effect of UV-B in a cyanobacterium Cylindrospermum sp. Environ Exp Bot 57:154–159

    Article  CAS  Google Scholar 

  • Costa ML, Santos MCR, Carrapico F (1999) Biomass characterization of A. filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327

    Article  Google Scholar 

  • Devendra C, Leng RA (2011) Feed resources for animals in Asia: issues, strategies for use, intensification and integration for increased productivity. Asian-Australas J Anim Sci 24:303–321

    Article  Google Scholar 

  • Ekman M, Tollback P, Klint J, Bergman B (2006) Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Pl Microbe Int 19:1251–1261

    Article  CAS  Google Scholar 

  • Ekman M, Tollbäck P, Bergman B (2008) Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. J Exp Bot 59(5):1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Espinase CR, Watanabe I (1976) Potential of nitorgen fixing Azolla- Anabaena complex as fertilizer in paddy soil. IRRI Saturday Seminar, 14th August, Las Banos

  • Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta 1803:650–661

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catala SM, Rose JK (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774. https://doi.org/10.1038/nprot.2006.102

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke RV (1991) Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 202:715–728

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W (2007) Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153:3246–3254

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:840–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechno-Yossef S, Nierzwicki-Bauer SA (2002) Azolla Anabaena symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in Symbiosis. Kluwer Academic, Dordrecht, pp 153–178

    Google Scholar 

  • Li L, Hong Y, Luan G, Mosel M, Malik M, Drlica K, Zhao X (2014) Ribosomal elongation factor 4 promotes cell death associated with lethal stress. mBio 5:1–9

    Article  Google Scholar 

  • Lu Y, Wang J, Yu Y, Shi L, Kong F (2014) Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress. Chemosphere 117:164–169

    Article  CAS  PubMed  Google Scholar 

  • Lyon BR, Lee PA, JMDi B, Tullio GR, Janech MG (2011) Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the Dimethylsulfoniopropionate production pathway. Plant Physiol 157:1926–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki JA, Schnobrich DJ, Culver GM (2002) The DnaK chaperone system facilitates 30S ribosomal subunit assembly. Mol Cell 10:129–138

    Article  CAS  PubMed  Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58:216–222. https://doi.org/10.1016/j.envexpbot.2005.08.002

    Article  CAS  Google Scholar 

  • Meeks JC (1998) Symbiotic associations. Methods Enzymol 167:113–121

    Article  Google Scholar 

  • Moisander PH, Mc Clinton E, Pearl HW (2002) Salinity effects on growth, photosynthetic parameters and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–444

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman J, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 2005(56):2907–2914

  • Padmaja N, Rajaram H, Apte SK (2012) A novel hemerythrin DNase from the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Arch Biochem Biophys 505(2):171–177

    Article  CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V et al (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–285

    Article  Google Scholar 

  • Rai PK (2007) Wastewater management through biomass of Azolla pinnata: an eco-sustainable approach. AMBIO J Hum Environ 36:426–428

    Article  CAS  Google Scholar 

  • Rai V, Rai AK (1999) Growth behaviour of Azolla pinnata at various salinity levels and induction of high salt tolerance. Plant Soil 206:79–84. https://doi.org/10.1023/A:1004340005693

    Article  Google Scholar 

  • Rai AK, Rai V (2000) Response of NaCl-adapted and unadapted Azolla pinnata-Anabaena azollae complex to salt stress: partial photosynthetic process and respiration. Symbiosis 29:249–261

    Google Scholar 

  • Rai V, Tiwari SP, Rai AK (2001) Effect of NaCl on nitrogen fixation of unadapted and NaCl adapted Azolla pinnata-Anabaena azollae. Aquat Bot 71:109–117. https://doi.org/10.1016/S0168-9452(02)00335-7

    Article  CAS  Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC (2014) Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteome 98:254–270

    Article  CAS  Google Scholar 

  • Schinzel R, Nidetzky B (1999) Bacterial K-glucan phosphorylases. FEMS Microbiol Lett 171(2):73–79

    CAS  PubMed  Google Scholar 

  • Shapiguzov A, Lyukevich AA, Allakhverdiev SI, Sergeyenko TV, Suzuki I, Murata N, Los DA (2005) Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression. Microbiology 151:447–455

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  CAS  Google Scholar 

  • Srivastava AK, Chatterjee A, Yadav S, Singh PK, Singh S, Rai LC (2015) UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. J Proteome 127:122–133

    Article  CAS  Google Scholar 

  • Singh PK (1989) Use of Azolla in Asian agriculture. Appl Agric Res 4:149–161

    Google Scholar 

  • Srivastava AK, Bhargava P, Thapar R, Rai LC (2008) Salinity induced physiological and proteomic changes in Anabaena doliolum. Environ Exp Bot 64:49–57

    Article  CAS  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatani N, Use K, Kato A, Ikeda K, Kojima K, Aichi M, Maeda S, Omata T (2015) Essential role of acyl-ACP Synthetase in acclimation of the cyanobacterium Synechococcus elongatus strain PCC 7942 to high-light conditions. Plant Cell Physiol 56:1608–16015

    Article  CAS  PubMed  Google Scholar 

  • Thagela P, Yadav RK, Mishra V, Dahuja A, Ahmad A, Singh PK, Tiwari BS, Abraham G (2016) Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. Protoplasma 254:303–312. https://doi.org/10.1007/s00709-016-0946-2

    Article  CAS  PubMed  Google Scholar 

  • Thagela P, Yadav RK, Tripathi K, Singh PK, Ahmad A, Dahuja A, Abraham G (2017) Salinity induced changes in the chloroplast proteome of the aquatic pteridophyte Azolla microphylla. Symbiosis https://doi.org/10.1007/s13199-017-0521-4

  • Tripathi LP, Sowdhamini R (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC Genomics 9:549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van-Hove C, Lejeune A (2002) The Azolla–Anabaena symbiosis. Biol Environ Proc Roy Irish Acad 102:23–26

    Article  Google Scholar 

  • Vidal R, Lo’pez-Maury L, Guerrero MG, Florencio FJ (2009) Characterization of an Alcohol Dehydrogenase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 That Responds to Environmental Stress Conditions via the Hik34-Rre1 Two-Component System. J Bacteriol 191:4383–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2003) Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 9:1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–21

    Article  Google Scholar 

  • Watanabe I, Espinase CR, Beria NS, Alimagno BV (1977) The utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. IRRI Res Paper Ser 11:1–15

    Google Scholar 

  • Winkler ME (1987) Biosynthesis of histidine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol I, 2nd edn. ASM Press, Washington, DC, pp 395–411

    Google Scholar 

  • Yadav RK, Abraham G, Singh YV, Singh PK (2014) Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad 80:301–316

    Article  Google Scholar 

  • Yadav RK, Tripathi K, Ramteke PW, Varghese E, Abraham G (2016) Salinity induced physiological and biochemical changes in the freshly sepearted cyanobionts of Azolla microphylla and Azolla caroliniana. Plant Physiol Biochem 106:39–45

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang X, Li F, Dahlgren RA, Wang H (2016) Identification of microRNA-size sRNAs related to salt tolerance in Spirulina platensis. Plant Mol Biol Report 34:539–555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to ICAR-Indian Agricultural Research Institute and Indian Council for Agricultural Research, New Delhi for facilities. Financial assistance from SERB, Department of Science and Technology, New Delhi (SR/SO/PS/0077/2010) and HRDG, Council of Scientific and Industrial Research, New Delhi (No. 8(1319)/12/EMR-II) is gratefully acknowledged. Thanks are also due to Prof. N.K. Singh, ICAR-National Research Centre on Plant Biotechnology, New Delhi for MALDI-TOF-MS/MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

GA, PKS and PWR planned the experiments and provided intellectual inputs for the work. RKY conducted the experiments, KNT assisted in recording the observations and VM helped in the MALDI-TOF-MS/MS analysis.

Corresponding author

Correspondence to Gerard Abraham.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

ESM 1

(DOCX 3218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.K., Tripathi, K., Mishra, V. et al. Proteomic evaluation of the freshly isolated cyanobionts from Azolla microphylla exposed to salinity stress. Symbiosis 77, 249–256 (2019). https://doi.org/10.1007/s13199-018-0586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0586-8

Keywords

Navigation