Abstract
The plant-microbiome symbiotic association will need to be taken advantage of for feeding the burgeoning millions in the face of climatic perturbations and environmental deterioration. Since the plants select their microbiome from the soils on which they grow, soils, therefore, remain the key source of microbiome for sustainable food production. Building a reliable and reproducible plant microbiome vault of key crops growing with desirable traits such as high yielders under low input conditions, drought tolerant plots, disease suppressive soils, etc. can become an important and irreparable biotechnological resource for future agriculture. Based on the available literature, a complementary approach is discussed wherein i) rhizosphere and bulk soils are preserved with the best available protocols in such a way that their biological components remain undisturbed for long periods and the viable microbiome can be accessed; supplemented side-by-side with ii) systematic isolation, screening and preservation of the ‘Minimal Effective Microbiome Set’ (‘MEMS’) for building the plant microbiome vault.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agler TA, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352. https://doi.org/10.1371/journal.pbio.1002352
Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VEA, Hammer EC (2018) Build your own soil: exploring microfluidics to create microbial habitat structure. ISME J 12:312–319
Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681
Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273
Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann et al (2015) Functional overlap of Arabidopsis leaf and root microbiota. Nature 528:364–372
Berendsen RL, Vismans C, Yu K, Song Y, de Jonge R, Burgman WP, Buromolle M, Herschend J, Bakker PAHM, Pieterse CM (2018) Disease-induced assemblage of plant-beneficial bacterial consortium. ISME J 12:1496–1507. https://doi.org/10.1038/341396-068-0093-1
Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored:implications for experimental botany. J Exp Biol 67:995–1002
Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329
Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–e00011
Bulgarelli D, Schlaeppi K, Spaepen S, Ver L, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838
Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):e2001793. https://doi.org/10.1371/journal.pbio.2001793
Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263
Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiome of perennial grass. Soil Biol Biochem 98:1–10
Chen H-M, Wu H, Yan B, Zhao H, Liu F, Zhang H, Sheng Q, Miao F, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19:672. https://doi.org/10.3390/ijms19030672
Clark IM, Hirsch PR (2008) Survival of bacterial DNA and culturable bacteria in archived soils from the Rothamsted experiment. Soil Biol Biochem 40:1090–1102
Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811
de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araújo LM, Verza NC, Bagheri HC, Imperial J, Arruda P (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774. https://doi.org/10.1038/srep28774
Declerck S, Willems A, van der Heijden MGA, Varese GC, Tukovskaya O, Evtushenkho L, Ivshina I, Desmeth P (2015) PERN: an EU-Russia initiative for rhizosphere microbial resources. Trends Biotechnol 33:377–380
Donachie SP, Foster JS, Brown MV (2007) Culture clash: challenging the dogma of microbial diversity. ISME 1:97–102
Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S et al (2015) Structure, variations, and assemble of root-associated micrbiomes of rice. PNAS 112:E911–EE20
Finkel OM, Castrillo G, Parades SH, Gonzalez IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163
Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839
Goldford JE, Lu N, Bajic D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segre D, Mehta P, Sancez A (2018) Emergent simplicity in microbiome community assembly. Science 361:469–474
Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01971
Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00355
Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457
Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Kinght R, Ley R et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616
Hamilton CE, Bever JD, Labbe J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308
Heckly RJ (1978) Preservation of microorganisms. Ad Appl Microbiol 24:1–54
Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25
Howard MM, Bell TH, Kao-Kniffin J (2017) Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a new environment. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx092
Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275
Hunziker L, Bonisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81:821–830
Inostroza NG, Barra PJ, Wick LY, Mora ML, Jorquera MA (2016) Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on whet growth under different conditions. Lett Appl Microbiol 64:158–163
Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224
Lebeis SL, Paredes SH, Lundberg DS, Breakfiled N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864
Lemanceau P, Blouin M, Muller D, Moenne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595. https://doi.org/10.1016/j.tplants.2017.04.008
Li F, Zhang X, Gong J, Liu L, Yi Y (2018) Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS One 13(3):e0194080. https://doi.org/10.1371/journal.pone.0194080
Lundberg DS, Lebeis SL, Paredes SH, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90
Manter DK, Delgado JA, Blackburn HD, Harmel D, Perez de Leon AA (2017) Why we need a national living soil repository. PNAS 114:13587–13590
Marasco R, Rolli E, Ettoumi B et al (2012) A drought resistance promoting microbiome is selected by root system under desert farming. PLoS One 7:48479
Meadows-Smith M, Wigley PP, Turner S (2017) Integrated plant breeding methods for complementary pairings of plant and microbial consortia. US Patent Application 20170086402
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100
Morono Y, Terada T, Yamamoto Y, Xiao N, Hirose T, Sugeno M, Ohwada N, Inagaki F (2015) Intact preservation of environmental samples by freezing under an alternating magnetic field. Environ Microbiol Rep 7:243–251. https://doi.org/10.1111/1758-2229.12238
Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617
Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. PNAS 114:E2450–E2459. https://doi.org/10.1073/pnas.1616148114
Nogales A, Nobre T, Valadas V, Ragonezi C, Goring M et al (2015) Can functional hologenomics aid tackling challenges in plant breeding? Brief Funct Genomics 15:288–297. https://doi.org/10.1093/bfgp/elv030
Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2014) Selection on soil microbiomes reveals reproducible trait impacts on plant functions. ISME J 9:980–989. https://doi.org/10.1038/ismej.2014.196
Partida-Martinez LP, Heli M (2011) The microbe-free plant: fact or artifact. Front Plant Sci 2:100
Peiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, Sessitsch A (2017) Rhizosphere microbiomes of potato cultivated in high Andes show stable and dynamic core microbiomes with difference responses to plant development. FEMS Microb Ecol 93. https://doi.org/10.1093/femsec/fiw242
Pendergast TH IV, Burke DJ, Carson WP (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytol 197:1300–1393
Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484
Pham VHT, Kim J (2016) Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol 10:49–59
Pieterse CMJ, de Jonge R, Berendsen RL (2016) Soil-borne supremacy. Trends Plant Sci 21:171–173
Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BB, Kinkel LL, Garrett KA (2016) Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096
Prakash O, Shouche YS, Jangid K (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 53:247–252
Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352:1392–1393
Ringeisen BR, Wu PK. 2017. Isolation of microniches from solid-phase and solid suspension in liquid phase microbiomes using laser-induced forward transfer. US Patent Application 2017/0002344 A1
Rodriguez-Echeverria S, Armas C, Piston N, Hortal S, Pugnaire F (2013) A role of below-ground biota on plant-plant facilitation. J Ecol 101:1420–1428
Rodriguez-Echeverria S, Lozano YM, Bardgett RD (2016) Influence of soil microbiota in nurse plant systems. Funct Ecol 30:30–40
Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: root bacteria protect plants from drought. Environ Microbiol. https://doi.org/10.1111/1462-2920.12439
Rosenberg E, Zilber-Rosenberg I. 2016. Microbes drive evolution of animals and plants; the hologenome concept. MBio 7(2). pii: e01395-e01315
Sanchez-Canizares C, Jorrin B, Poole PS, Tcakz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196. https://doi.org/10.1016/j.mib.2017.07.001
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant form a sudden-wilt disease that emerged during continuous cropping. PNAS 112:E5013–E5020. https://doi.org/10.1073/pnas.1505765112
Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217
Schlaeppi K, Dombrowski N, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111:585–592
Sharma KS, Gupta AK, Shukla AW, Ahmed E, Sharma MP, Ramesh A (2016) Microbial conservation strategies and methodologies: status and challenges. Indian J Plant Genet Resour 29:340–342
Simillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C et al (2018) Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23:229–240.e5
Sugio A, Dubreuil G, Giron D, Simon JC (2015) Plant-insect interactions under bacterial influence: ecological implifications and underlying mechanisms. J Exp Bot 66:467–478
Swenson W, Wilson DS, Elias R (2000) Artificial ecosystem selection. PNAS 97:9110–9114
Thompson LR, Sanders JG, McDonald D, Amir A, The Earth Microbiome Project Consortium et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463
Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66:2167–2175
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nature Plants 4:247–257
Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209
van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol. https://doi.org/10.1371/journal.pbio.10023878.t001
Van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D et al (2018) Nitrogen fixation in a landrace of maize issupported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352. https://doi.org/10.1371/journal.pbio.2006352
Vandenkoornhuyse P, Qaiser A, Duhamel M (2015) Le Van amandine, Dufrense a. 2015. The importance of the microbiome of the plant holobiont (Tansley rev.). New Phytol. https://doi.org/10.1111/nph.13312
VanInsberghe D, Hartmann M, Stewart GR, Mohn WW (2013) Isolation of substantial proportion of forest soil bacterial communities detected via pyrotag sequencing. Appl Environ Microbiol 79:2096–2098
Vorholt JA, Vogel C, Carlstrom CI, Muller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155
Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17:717–726
Wei Z, Jousset A (2017) Plant breeding goes microbial. Trends Pl Sci 22:555–558.
White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7:plu093. https://doi.org/10.1093/aobpla/plu093
Winters RD, Winn JWC (2010) A simple, effective method of bacterial culture storage: a brief technical note. J Bacteriol Virol 40:99–101
Xue C, Ryan Penton C, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124
Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2015) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351. https://doi.org/10.1111/1462-2920.12925
Yuan Z, Druzhinina IS, Labbe J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6(32467):2016. https://doi.org/10.1038/srep32467
Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G et al (2015) The soil microbiome influences grapevine –associated microbiota. MBio 6:e02527–e02514
Zelezniak A, Andrejev S, Ponomarova O, Mende R, Bork P, Patil KR (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS 112:6449–6454
Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735
Zolla G, Badri DV, Bakker MG, Manter D, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9
Acknowledgments
The authors gratefully acknowledge the critical suggestions made by the anonymous reviewers for improving the contents.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gopal, M., Gupta, A. Building plant microbiome vault: a future biotechnological resource. Symbiosis 77, 1–8 (2019). https://doi.org/10.1007/s13199-018-0574-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13199-018-0574-z