Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169
PubMed
PubMed Central
CAS
Google Scholar
Anklin-Mühlemann R, Bignell DE, Veivers PC, Leutold RH, Slaytor M (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41(11):929–940. https://doi.org/10.1016/0022-1910(95)00062-Y
Article
Google Scholar
Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ (2009) Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS One 4(3):e4641. https://doi.org/10.1371/journal.pone.0004641
Article
PubMed
PubMed Central
CAS
Google Scholar
Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science (New York, NY) 257(5075):1384–1387. https://doi.org/10.1126/science.257.5075.1384
Article
CAS
Google Scholar
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180. https://doi.org/10.1038/nrmicro3182
Article
PubMed
CAS
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400. https://doi.org/10.1016/j.copbio.2010.10.009
Article
PubMed
CAS
Google Scholar
Burnum KE, Callister SJ, Nicora CD, Purvine SO, Hugenholtz P, Warnecke F, Scheffrahn RH, Smith RD, Lipton MS (2011) Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. ISME J 5(1):161–164. https://doi.org/10.1038/ismej.2010.97
Article
PubMed
CAS
Google Scholar
Coy MR, Salem TZ, Denton JS, Kovaleva ES, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40(10):723–732. https://doi.org/10.1016/j.ibmb.2010.07.004
Article
PubMed
CAS
Google Scholar
Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56(7):1539–1545. https://doi.org/10.1099/ijs.0.63894-0
Article
PubMed
CAS
Google Scholar
Enroth-Cugell C, Robson JG (1984) Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest Ophthalmol Vis Sci 25(3):250–267
PubMed
CAS
Google Scholar
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390(6660):580–586. https://doi.org/10.1038/37551
Article
PubMed
CAS
Google Scholar
Godden B, Ball AS, Helvenstein P, Mccarthy AJ, Penninckx MJ (1992) Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138(11):2441–2448. https://doi.org/10.1099/00221287-138-11-2441
Article
CAS
Google Scholar
Hammann R, Kutzner HJ (1998) Key enzymes for the degradation of benzoate, m- and p- hydroxybenzoate by some members of the order Actinomycetales. J Basic Microbiol 38(3):207–220. https://doi.org/10.1002/(SICI)1521-4028(199807)38:3<207::AID-JOBM207>3.0.CO;2-R
Article
PubMed
CAS
Google Scholar
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126. https://doi.org/10.1371/journal.pone.0061126
Article
PubMed
PubMed Central
CAS
Google Scholar
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599. https://doi.org/10.1128/AEM.71.11.6590-6599.2005
Article
PubMed
PubMed Central
CAS
Google Scholar
Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraprn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72(10):6780–6767. https://doi.org/10.1128/AEM.00891-06
Article
PubMed
PubMed Central
CAS
Google Scholar
Ke J, Sun J-Z, Nguyen HD, Singh D, Lee KC, Beyenal H, Chen S-L (2010) In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Sci 17(3):277–290. https://doi.org/10.1111/j.1744-7917.2010.01336.x
Article
CAS
Google Scholar
Ke J, Singh D, Chen S (2011) Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int Biodeterior Biodegrad 65(6):744–756. https://doi.org/10.1016/j.ibiod.2010.12.016
Article
CAS
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808
Article
PubMed
CAS
Google Scholar
Kohler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.) Appl Environ Microbiol 78(13):4691–4701. https://doi.org/10.1128/AEM.00683-12
Article
PubMed
PubMed Central
CAS
Google Scholar
Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73(12):2561–2567. https://doi.org/10.1271/bbb.90304
Article
PubMed
CAS
Google Scholar
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676
Article
PubMed
PubMed Central
CAS
Google Scholar
Makonde HM, Boga HI, Osiemo Z, Mwirichia R, Mackenzie LM, Goker M, Klenk HP (2013) 16S- rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie Van Leeuwenhoek 104(5):869–883. https://doi.org/10.1007/s10482-013-0001-7
Article
PubMed
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. https://doi.org/10.1038/ismej.2011.139
Article
PubMed
CAS
Google Scholar
Mercer DK, Iqbal M, Miller P, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62(6):2186–2190
PubMed
PubMed Central
CAS
Google Scholar
Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol 16(9):2711–2722. https://doi.org/10.1111/1462-2920.12425
Article
CAS
Google Scholar
Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71(5):1244–1251. https://doi.org/10.1271/bbb.60672
Article
PubMed
CAS
Google Scholar
Odelson DA, Breznal JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Micobiol 45:1602–1613
CAS
Google Scholar
Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61(1):1–9. https://doi.org/10.1007/s00253-002-1189-z
Article
PubMed
CAS
Google Scholar
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494
Article
PubMed
PubMed Central
CAS
Google Scholar
Pasti MB, Pometto AL 3rd, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56(7):2213–2218
PubMed
PubMed Central
CAS
Google Scholar
Schultz JE, Brezbak JA (1979) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hinguts. Appl Environ Microbiol 37(6):1206–1210
PubMed
PubMed Central
CAS
Google Scholar
Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2(4):436–449. https://doi.org/10.1046/j.1462-2920.2000.00127.x
Article
PubMed
CAS
Google Scholar
Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9(3):229–238. https://doi.org/10.1007/s00792-005-0440-9
Article
PubMed
Google Scholar
Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66(5):2199–2207. https://doi.org/10.1128/AEM.66.5.2199-2207.2000
Article
PubMed
PubMed Central
CAS
Google Scholar
Tuomela M, Hatakka A, Raiskila S, Vikman M, Itävaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55(4):492–499. https://doi.org/10.1007/s002530000513
Article
PubMed
CAS
Google Scholar
Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13(3-4):99–106. https://doi.org/10.1016/j.anaerobe.2007.05.004
Article
PubMed
CAS
Google Scholar
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565. https://doi.org/10.1038/nature06269
Article
PubMed
CAS
Google Scholar
Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7(7):916–932. https://doi.org/10.1111/j.1462-2920.2005.00760.x
Article
PubMed
CAS
Google Scholar