Advertisement

Symbiosis

, Volume 76, Issue 2, pp 187–197 | Cite as

16S rRNA metagenomic analysis of the symbiotic community structures of bacteria in foregut, midgut, and hindgut of the wood-feeding termite Bulbitermes sp.

  • Yue Ming Chew
  • SiewFen Lye
  • Madihah Md. Salleh
  • Adibah Yahya
Article

Abstract

The termite gut is a highly structured microhabitat with physicochemically distinct regions. It is generally separated into the foregut, midgut and hindgut. The distribution of gut microbiota is greatly influenced by varying physicochemical conditions within the gut. Thus, each gut compartment has a unique microbial population structure. In this study, the bacterial communities of foregut, midgut and hindgut of wood-feeding higher termite, Bulbitermes sp. were analyzed in detail via metagenomic sequencing of the 16S rRNA V3-V4 region. While the microbiomes of the foregut and midgut shared a similar taxonomic pattern, the hindgut possessed more diverse bacterial phylotypes. The communities in the foregut and midgut were dominated by members of the group Bacilli and Clostridia (Firmicutes) as well as taxon Actinomycetales (Actinobacteria). The main bacterial lineage found in hindgut was Spirochaetaceae (Spirochaetes). The significant difference among the three guts was the relative abundance of the potential lignin-degrading bacteria, Actinomycetales, in both the foregut and midgut. This suggests that lignin modification was probably held in the anterior part of termite gut. Predictive functional profiles of the metagenomes using 16S rRNA marker gene showed that cell motility, energy metabolism and metabolism of cofactors and vitamins were found predominantly in hindgut microbiota, whereas xenobiotics degradation and metabolism mostly occurred in the foregut segment. This was compatible with our 16S rRNA metagenomic results showing that the lignocellulose degradation process was initiated by lignin disruption, increasing the accessibility of celluloses and hemicelluloses.

Keywords

Symbiosis Bulbitermes sp. Foregut Midgut Hindgut 16S rRNA metagenomics 

Notes

Acknowledgments

The authors would like to thank Maricel Cuevas David from UniversitiTun Hussein Onn Malaysia (UTHM), for the identification of the termite’s genus. This work was financed by Research University Grant (Q.J130000.2545.07H38) Universiti Teknologi Malaysia (UTM), Malaysia.

Author contribution

Y.M.C. collected samples, extracted metagenome, analyses results and wrote the paper, S.F.L. performed bioinformatic analyses, M.M.S. and A.Y. designed the study and discussed the results.

Supplementary material

13199_2018_544_MOESM1_ESM.bmp (2.1 mb)
Figure S1 (BMP 2105 kb)
13199_2018_544_MOESM2_ESM.bmp (11.1 mb)
Figure S2 (BMP 11368 kb)
13199_2018_544_MOESM3_ESM.bmp (8.3 mb)
Figure S3 (BMP 8467 kb)
13199_2018_544_MOESM4_ESM.bmp (11.5 mb)
Figure S4 (BMP 11740 kb)

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169PubMedPubMedCentralGoogle Scholar
  2. Anklin-Mühlemann R, Bignell DE, Veivers PC, Leutold RH, Slaytor M (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41(11):929–940.  https://doi.org/10.1016/0022-1910(95)00062-Y CrossRefGoogle Scholar
  3. Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ (2009) Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine. PLoS One 4(3):e4641.  https://doi.org/10.1371/journal.pone.0004641 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science (New York, NY) 257(5075):1384–1387.  https://doi.org/10.1126/science.257.5075.1384 CrossRefGoogle Scholar
  5. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180.  https://doi.org/10.1038/nrmicro3182 CrossRefPubMedGoogle Scholar
  6. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400.  https://doi.org/10.1016/j.copbio.2010.10.009 CrossRefPubMedGoogle Scholar
  7. Burnum KE, Callister SJ, Nicora CD, Purvine SO, Hugenholtz P, Warnecke F, Scheffrahn RH, Smith RD, Lipton MS (2011) Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. ISME J 5(1):161–164.  https://doi.org/10.1038/ismej.2010.97 CrossRefPubMedGoogle Scholar
  8. Coy MR, Salem TZ, Denton JS, Kovaleva ES, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40(10):723–732.  https://doi.org/10.1016/j.ibmb.2010.07.004 CrossRefPubMedGoogle Scholar
  9. Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56(7):1539–1545.  https://doi.org/10.1099/ijs.0.63894-0 CrossRefPubMedGoogle Scholar
  10. Enroth-Cugell C, Robson JG (1984) Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest Ophthalmol Vis Sci 25(3):250–267PubMedGoogle Scholar
  11. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390(6660):580–586.  https://doi.org/10.1038/37551 CrossRefPubMedGoogle Scholar
  12. Godden B, Ball AS, Helvenstein P, Mccarthy AJ, Penninckx MJ (1992) Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138(11):2441–2448.  https://doi.org/10.1099/00221287-138-11-2441 CrossRefGoogle Scholar
  13. Hammann R, Kutzner HJ (1998) Key enzymes for the degradation of benzoate, m- and p- hydroxybenzoate by some members of the order Actinomycetales. J Basic Microbiol 38(3):207–220.  https://doi.org/10.1002/(SICI)1521-4028(199807)38:3<207::AID-JOBM207>3.0.CO;2-R CrossRefPubMedGoogle Scholar
  14. He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126.  https://doi.org/10.1371/journal.pone.0061126 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599.  https://doi.org/10.1128/AEM.71.11.6590-6599.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraprn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72(10):6780–6767.  https://doi.org/10.1128/AEM.00891-06 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ke J, Sun J-Z, Nguyen HD, Singh D, Lee KC, Beyenal H, Chen S-L (2010) In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Sci 17(3):277–290.  https://doi.org/10.1111/j.1744-7917.2010.01336.x CrossRefGoogle Scholar
  18. Ke J, Singh D, Chen S (2011) Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int Biodeterior Biodegrad 65(6):744–756.  https://doi.org/10.1016/j.ibiod.2010.12.016 CrossRefGoogle Scholar
  19. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1.  https://doi.org/10.1093/nar/gks808 CrossRefPubMedGoogle Scholar
  20. Kohler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.) Appl Environ Microbiol 78(13):4691–4701.  https://doi.org/10.1128/AEM.00683-12 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73(12):2561–2567.  https://doi.org/10.1271/bbb.90304 CrossRefPubMedGoogle Scholar
  22. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821.  https://doi.org/10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Makonde HM, Boga HI, Osiemo Z, Mwirichia R, Mackenzie LM, Goker M, Klenk HP (2013) 16S- rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie Van Leeuwenhoek 104(5):869–883.  https://doi.org/10.1007/s10482-013-0001-7 CrossRefPubMedGoogle Scholar
  24. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618.  https://doi.org/10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  25. Mercer DK, Iqbal M, Miller P, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62(6):2186–2190PubMedPubMedCentralGoogle Scholar
  26. Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol 16(9):2711–2722.  https://doi.org/10.1111/1462-2920.12425 CrossRefGoogle Scholar
  27. Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71(5):1244–1251.  https://doi.org/10.1271/bbb.60672 CrossRefPubMedGoogle Scholar
  28. Odelson DA, Breznal JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Micobiol 45:1602–1613Google Scholar
  29. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61(1):1–9.  https://doi.org/10.1007/s00253-002-1189-z CrossRefPubMedGoogle Scholar
  30. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pasti MB, Pometto AL 3rd, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56(7):2213–2218PubMedPubMedCentralGoogle Scholar
  32. Schultz JE, Brezbak JA (1979) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hinguts. Appl Environ Microbiol 37(6):1206–1210PubMedPubMedCentralGoogle Scholar
  33. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2(4):436–449.  https://doi.org/10.1046/j.1462-2920.2000.00127.x CrossRefPubMedGoogle Scholar
  34. Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9(3):229–238.  https://doi.org/10.1007/s00792-005-0440-9 CrossRefPubMedGoogle Scholar
  35. Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66(5):2199–2207.  https://doi.org/10.1128/AEM.66.5.2199-2207.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tuomela M, Hatakka A, Raiskila S, Vikman M, Itävaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55(4):492–499.  https://doi.org/10.1007/s002530000513 CrossRefPubMedGoogle Scholar
  37. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13(3-4):99–106.  https://doi.org/10.1016/j.anaerobe.2007.05.004 CrossRefPubMedGoogle Scholar
  38. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565.  https://doi.org/10.1038/nature06269 CrossRefPubMedGoogle Scholar
  39. Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7(7):916–932.  https://doi.org/10.1111/j.1462-2920.2005.00760.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yue Ming Chew
    • 1
  • SiewFen Lye
    • 2
  • Madihah Md. Salleh
    • 1
  • Adibah Yahya
    • 1
  1. 1.Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Bioeasy Sdn. BhdShah AlamMalaysia

Personalised recommendations