Abstract
Common bean [Phaseolus vulgaris (Linnaeus)] is the key source of protein, carbohydrates and micronutrients for over 300 million people in the tropics. Like many legumes, P. vulgaris can fix atmospheric nitrogen in symbiosis with rhizobia, alleviating the need for the expensive and polluting N-fertilizers. The crop is known to nodulate with a wide range of rhizobia and, although Brazil is not a center of genetic origin/domestication of P. vulgaris, a variety of rhizobial species have been found as symbionts of the legume. Mato Grosso do Sul (MS) is one of the largest common bean producer states in Brazil, with reports of high yields and abundant natural nodulation. The objective of this study was to evaluate the diversity of 73 indigenous rhizobia isolated from common bean grown in 22 municipalities of MS. Great morphophysiological and genetic diversity was found, as indicated by the six and 35 clusters formed, considering the similarity level of 75 and 70%, respectively, for the phenotypic and rep-PCR dendrograms. Eleven representative isolates were selected for detailed genetic characterization using 16S rRNA and three protein-coding housekeeping genes, glnII, gyrB and recA. We identified species originated from the centers of origin/domestication of the legume, R. etli and R. phaseoli, species probably indigenous of Brazil, R. leucaenae and others of the Rhizobium/Agrobacterium clade, in addition to putative new species. The results highlight the great rhizobial diversity of the region.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507
Andrade D, Murphy P, Giller K (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68(8):4025–4034. https://doi.org/10.1128/AEM.68.8.4025-4034.2002
Aujoulat F, Jumas-Bilak E, Masnou A, Sallé F, Faure D, Segonds C, Marchandin H, Teyssier C (2011) Multilocus sequence-based analysis delineates a clonal population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of human origin. J Bacteriol 193(10):2608–2618. https://doi.org/10.1128/JB.00107-11
Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197(1):300–313. https://doi.org/10.1111/j.1469-8137.2012.04377.x
Buttery B, Park S, Findlay W (1987) Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can J Plant Sci 67(2):425–432
Cao Y, Wang E-T, Zhao L, Chen W-M, Wei G-H (2014) Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem 78:128–137. https://doi.org/10.1016/j.soilbio.2014.07.026
Cavalieri A, Merchant A, van Volkenburgh E (2011) Why not beans? Funct Plant Biol 38(12):iii–ivi. https://doi.org/10.1071/FPv38n12_FO
Chibeba AM, Kyei-Boahen S, de Fátima Guimarães M, Nogueira MA, Hungria M (2017) Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agric Ecosyst Environ 246:291–305. https://doi.org/10.1016/j.agee.2017.06.017
CONAB (2017) Feijão – Séries históricas. Companhia Nacional de Abastecimento
Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67(10):3937–3945. https://doi.org/10.1099/ijsem.0.002225
Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63(11):4167–4173. https://doi.org/10.1099/ijs.0.052928-0
Dall’Agnol RF, Ribeiro RA, Delamuta JRM, Ormeño-Orrillo E, Rogel MA, Andrade DS, Martínez-Romero E, Hungria M (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64(9):3222–3229. https://doi.org/10.1099/ijs.0.064543-0
Dall'Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M (2017) Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 93(4):1–15. https://doi.org/10.1093/femsec/fix02
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S (2014) Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 103:80–100. https://doi.org/10.1016/j.mimet.2014.05.013
de Souza JEB, Ferreira EPB (2017) Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agric Ecosyst Environ 237:250–257. https://doi.org/10.1016/j.agee.2016.12.040
Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Annu Rev Microbiol 40(1):133–157. https://doi.org/10.1146/annurev.mi.40.100186.001023
FAO (2016) FAO/UNESCO soil map of the world. FAO, Rome
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.2307/2408678
Fournier P-E, Suhre K, Fournous G, Raoult D (2006) Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 56(5):1025–1029. https://doi.org/10.1099/ijs.0.63903-0
Gepts P (1990) Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans. Econ Bot 44(3):28–38. https://doi.org/10.1007/BF02860473
Graham P (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112. https://doi.org/10.1016/0378-4290(81)90060-5
Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36(9):1389–1398. https://doi.org/10.1016/j.soilbio.2004.03.005
Grange L, Hungria M, Graham PH, Martínez-Romero E (2007) New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil. Soil Biol Biochem 39(4):867–876. https://doi.org/10.1016/j.soilbio.2006.10.008
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Hungria M, Neves MC (1987) Cultivar and Rhizobium strain effect on nitrogen fixation and transport in Phaseolus vulgaris L. Plant Soil 103(1):111–121. https://doi.org/10.1007/BF02370675
Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Megı́as M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32(11):1515–1528. https://doi.org/10.1016/S0038-0717(00)00063-8
Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39(2):88–93. https://doi.org/10.1007/s00374-003-0682-6
Hungria M, Chueire LMO, Megías M, Lamrabet Y, Probanza A, Guttierrez-Mañero FJ, Campo RJ (2006) Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288(1–2):343–356. https://doi.org/10.1007/s11104-006-9125-0
Hungria M, O'Hara G, Zilli J, Araujo R, Deaker R, Howieson J (2016) Isolation and growth of rhizobia. In: Howieson JG, Dilworth MJ (eds) Isolation and growth of rhizobia. Australian Centre for International Agricultural Research (ACIAR), Canberra, pp 39–60 ISBN: 978 1 925436 18 1
Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
Kaschuk G, Hungria M, Andrade D, Campo R (2006) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32(2):210–220. https://doi.org/10.1016/j.apsoil.2005.06.008
Khokhar SN, Khan MA, Chaudhri MF (2001) Some characters of chickpea-nodulating rhizobia native to Thal soil. Pak J Biol Sci 4(8):1016–1019
Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58(1):200–214. https://doi.org/10.1099/ijs.0.65392-0
Martínez-Romero E (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252(1):11–23. https://doi.org/10.1023/A:1024199013926
Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Evol Microbiol 41(3):417–426. https://doi.org/10.1099/00207713-41-3-417
Menna P, Pereira AA, Bangel EV, Hungria M (2009) rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48(1-3):120–130. https://doi.org/10.1007/BF03179991
Mercante FM, Otsubo AA, Brito OR (2017) New native rhizobia strains for inoculation of common bean in the Brazilian savanna. Rev Bras Ciênc Solo 41(0):e0150120. https://doi.org/10.1590/18069657rbcs20150120
Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41(1):77–84. https://doi.org/10.1111/j.1574-6941.2002.tb00968.x
Mostasso L, Mostasso FL, Dias BG, Vargas MA, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop Res 73(2):121–132. https://doi.org/10.1016/S0378-4290(01)00186-1
Mulas D, García-Fraile P, Carro L, Ramírez-Bahena M-H, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43(11):2283–2293. https://doi.org/10.1016/j.soilbio.2011.07.018
Mulas D, Seco V, Casquero PA, Velázquez E, González-Andrés F (2015) Inoculation with indigenous rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system. Symbiosis 67(1–3):113–124. https://doi.org/10.1007/s13199-015-0359-6
Ormeño-Orrillo E, Gomes DF, del Cerro P, Vasconcelos ATR, Canchaya C, Almeida LGP, Mercante FM, Ollero FJ, Megías M, Hungria M (2016) Genome of Rhizobium leucaenae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 17(1):1–15. https://doi.org/10.1186/s12864-016-2859-z
Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.) Int J Syst Evol Microbiol 61(11):2632–2639. https://doi.org/10.1099/ijs.0.028407-0
Peoples M, Brockwell J, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17. https://doi.org/10.1007/BF03179980
Pinto FGS, Hungria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.) Soil Biol Biochem 39(8):1851–1864. https://doi.org/10.1016/j.soilbio.2007.01.001
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818. https://doi.org/10.1093/bioinformatics/14.9.817
Rahmani HA, Räsänen L, Afshari M, Lindström K (2011) Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Appl Soil Ecol 48(3):287–293. https://doi.org/10.1016/j.apsoil.2011.04.010
Ramasamy D, Mishra AK, Lagier J-C, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier P-E (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64(2):384–391. https://doi.org/10.1099/ijs.0.057091-0
Rashid MH-o, Young JPW, Everall I, Clercx P, Willems A, Braun MS, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65(9):3037–3045. https://doi.org/10.1099/ijs.0.059774-0
Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160(4):297–306. https://doi.org/10.1016/j.resmic.2009.03.009
Ribeiro RA, Rogel MA, Lopez-Lopez A, Ormeno-Orrillo E, Barcellos FG, Martinez J, Thompson FL, Martinez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62(5):1179–1184. https://doi.org/10.1099/ijs.0.032912-0
Ribeiro RA, Ormeno-Orrillo E, Dall'Agnol RF, Graham PH, Martinez-Romero E, Hungria M (2013) Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164(7):740–748. https://doi.org/10.1016/j.resmic.2013.05.002
Ribeiro RA, Martins TB, Ormeño-Orrillo E, Delamuta JRM, Rogel MA, Martínez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65(9):3162–3169. https://doi.org/10.1099/ijsem.0.000392
Rosa MLG, Falcão PM, Yokoo EM, da Cruz Filho RA, Alcoforado VM, de Souza BSN, Pinto FN, Nery AB (2014) Brazil’s staple food and incident diabetes. Nutrition 30(3):365–368. https://doi.org/10.1016/j.nut.2013.09.004
Sankhla IS, Meghwal RR, Tak N, Tak A, Gehlot HS (2015) Phenotypic and molecular characterization of microsymbionts associated with Crotalaria medicagenia: a native legume of the indian Thar Desert. Plant Archives 15(2):1003–1010
Schwartz HF, Corrales MAP (1989) Bean production problems in the tropics. CIAT, Cali, Colombia ISBN: 958-9183-04-2
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464. https://doi.org/10.2307/2958889
Sentausa E, Fournier PE (2013) Advantages and limitations of genomics in prokaryotic taxonomy. Clin Microbiol Infect 19(9):790–795. https://doi.org/10.1111/1469-0691.12181
Sneath PH, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman and Company, San Francisco 0716706970
Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Springer-Verlag, New York ISBN: 978-1-4613-8377-2. https://doi.org/10.1007/978-1-4613-8375-8
Stocco P, Pires do Santos JC, Vargas VP, Hungria M (2008) Avaliação da biodiversidade de rizóbios simbiontes do feijoeiro (Phaseolus vulgaris L.) em Santa Catarina. Rev Bras Ciênc Solo 32(3):1107–1120. https://doi.org/10.1590/S0100-06832008000300019
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197
Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57(1):19–28
Tindall BJ, Rosselló-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60(1):249–266. https://doi.org/10.1099/ijs.0.016949-0
Vargas MA, Mendes IC, Hungria M (2000) Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils. Biol Fertil Soils 32(3):228–233. https://doi.org/10.1007/s003740000240
Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5(1):25–40
Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX (2016) Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol 39(2):141–149. https://doi.org/10.1016/j.syapm.2016.01.004
Young J, Kuykendall L, Martinez-Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium–a reply to Farrand et al. (2003). Int J Syst Evol Microbiol 53(5):1689–1695. https://doi.org/10.1099/ijs.0.02762-0
Acknowledgements
This study was idealized by Dr. Fabio Martins Mercante (1963-2016), an extraordinary Brazilian scientist who dedicated his career to studies of biological nitrogen fixation with common bean, giving a remarkable contribution to the area, including from the description of new species to the identification of elite strains for the crop. The authors thank the assistance of Renan A. Ribeiro and Jakeline R.M. Delamuta (Embrapa Soja) on the BOX-PCR, 16S rRNA and housekeeping gene analyses and Rubson N.R. Sibaldelli (Embrapa Soja) for confection of Fig. 1. Our research group is supported by the INCT-Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq 465133/2014-4, Fundação Araucária-STI, CAPES). M.R. Costa acknowledges a PhD fellowship from CAPES-Embrapa (15/2014) and M. Hungria a research fellowship from CNPq (300878/2015-0).
Author information
Authors and Affiliations
Author notes
Fábio Martins Mercante died before publication of this work was completed.
- Fábio Martins Mercante
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 42.9 kb)
ESM 2
Figure S1 - Phylogenetic tree based on glnII (307 bp) gene sequences of 11 rhizobial isolates sampled in Mato Grosso do Sul (in bold) and type strains (T). The tree was reconstructed by the maximum-likelihood method using the best model of sequence evolution and the robustness of branching was estimated with 1,000 bootstraps. Only confidence levels = 70% are shown at the internodes. The scale bar indicates 2 substitutions per 10-nucleotide positions; a–e represent the five clusters formed with the isolates. (PPTX 57.0 kb)
ESM 3
Figure S2 - Phylogenetic tree based on gyrB (495 bp) gene sequences of 11 rhizobial isolates sampled in Mato Grosso do Sul (in bold) and type strains (T). The tree was reconstructed by the maximum-likelihood method using the best model of sequence evolution and the robustness of branching was estimated with 1,000 bootstraps. Only confidence levels = 70% are shown at the internodes. The scale bar indicates 1 substitution per 10-nucleotide positions; a–e represent the five clusters formed with the isolates. (PPTX 56.1 kb)
ESM 4
Figure S3 - Phylogenetic tree based on recA (273 bp) gene sequences of 11 rhizobial isolates sampled in Mato Grosso do Sul (in bold) and type strains (T). The tree was reconstructed by the maximum-likelihood method using the best model of sequence evolution and the robustness of branching was estimated with 1,000 bootstraps. Only confidence levels = 70% are shown at the internodes. The scale bar indicates 1 substitution per 10-nucleotide positions; a–e represent the five clusters formed with the isolates. (PPTX 62.2 kb)
Rights and permissions
About this article
Cite this article
Costa, M.R., Chibeba, A.M., Mercante, F.M. et al. Polyphasic characterization of rhizobia microsymbionts of common bean [Phaseolus vulgaris (L.)] isolated in Mato Grosso do Sul, a hotspot of Brazilian biodiversity. Symbiosis 76, 163–176 (2018). https://doi.org/10.1007/s13199-018-0543-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13199-018-0543-6


