Skip to main content

Advertisement

Log in

The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Azospirillum brasilense is a plant growth-promoting bacterium that is utilized as a bio-fertilizer worldwide. Inoculation of crops with A. brasilense can lead to a substantial boost in crop yield, although this enhancement is variable. Sometimes crop production is enhanced as much as 70% and other times enhancement does not occur at all. To solve this problem, a greater understanding of A. brasilense – plant interactions is needed. While the root/rhizosphere ecology of A. brasilense has been studied extensively there are no significant studies that address whether A. brasilense populates above ground plant tissues. In this study, we use a combination of qPCR, transcriptomics, confocal microscopy, and culturing techniques to map the in-planta distribution of a GFP-expressing A. brasilense in Phaseolus vulgaris (common bush bean). We show that A. brasilense constitute part of the plant bacterial microflora well above the root system. During P. vulgaris development A. brasilense was shown to actively move to developing bean seeds where it forms a significant intercellular population. GFP-expressing A. brasilense was shown to vertically transmit to successive plant generations demonstrating that A. brasilense in the seed constitute an effective inoculum. The ability of A. brasilense to not only colonize roots but to also actively migrate to developing seeds indicates the existence of a more complex symbiotic relationship than previously understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agera S, Igber G, Ammonium J (2012) Use of bio fertilizers for soil fertility restoration, weeds and pest control in forest management. Niger J Educ Health Tech Res 3:20–26

    Google Scholar 

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bact 182:6042–6048

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M (2006) Increase in auxiliary photo protective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Bio Biofert Soil 42:279–283

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–137

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. Tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G (1994) Root to root travel of the beneficial bacterium Azospirillum brasilense. Appl Environ Microbiol 60:2120–2131

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendosa MN, Toledo G, Holguin G, Ferrere-Cerrato R, Pedrin S (1995) Survival of Azospirillum in bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bashan Y (1986) Enhancement of wheat root colonization and plant development by Azospirillum brasilense Cd following temporary depression of rhizosphere microflora. Appl Environ Microbiol 51:1067–1071

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bashan Y (1986b) Synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Shaoo RK, Tuteja N (2014) Bio fertilizer function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66–76

    Article  Google Scholar 

  • Bragina A, Cardinale M, Berg C, Berg G (2013) Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 134

  • Broek AV, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  Google Scholar 

  • Chi F, Shen S-H, Chen S-F, Jing Y-X (2004) Migration of Azospirillum brasilense Yu62 from root to stem and leaves inside rice and tobacco plants. Acta Bot Sin 46:1065–1070

    Google Scholar 

  • Correa OS, Romero AM, Montecchia MS, Soria MA (2007) Tomato genotype and Azospirillum inoculation modulate the changes in bacteria communities associated with roots and leaves. J Appl Microbiol 102:781–786

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510

    Article  PubMed  Google Scholar 

  • Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18:597–600

    Article  PubMed  CAS  Google Scholar 

  • Faleiro AC, Pellizzaro Pereira T, Espindula E, Brod FCA, Arisi ACM (2013) Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis 61:125–133

    Article  CAS  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributed to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108

    Article  PubMed  CAS  Google Scholar 

  • Gavrilescua M, Chisti Y (2005) Biotechnology – a sustainable alternative for chemical industry. Biotech Adv 23:471–499

    Article  CAS  Google Scholar 

  • Gibert A, Magda D, Zard L (2015) Interplay between endophyte prevalence, effects, and transmission: insights from a natural grass population. PLoS One 10:e0139919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giraudoux P (2016) Data analysis in ecology (Package ‘pgirmess’ Version 1.6.4) [Computer Program]. URL https://cran.r-project.org/web/packages/pgirmess/pgirmess.pdf. Accessed 13 June 2016

  • Guerrero-Molina M, Winik B, Pedraza R (2012) More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol 61:205–212

    Article  Google Scholar 

  • Gundel PE, Martínez-Ghersa MS, Omacini M, Cuyeu R, Pagano E, Ríos R, Gersa CM (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gang AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes A, Birse L, Jackson RW, Holden NJ (2014) An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7. Front Microbiol 5:286

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33

    Article  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991) Anthocyanidins and flavonols, major Nod gene inducers from seed of a black-seeded common bean (Phaseolus vulgaris L.) Plant Physiol 97:751–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iizuka M, Arima Y, Yokoyama T, Watanbe K (2002) Positive correlation between the number of root nodule primordia and seed sugar secretion in soybean (Glycine max L.) seedlings inoculated with a low density Bradyrhizobium japonicum. Soil Sci Plant Nutr 48:219–225

    Article  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VS, Lievens B, Brys R (2015) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:329–3280

    Article  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandasamy D, Prasad NN (1979) Colonization by Rhizobia of the seed and roots of legumes in relation to exudation of phenolics. Soil Biol Biochem 11:73–75

    Article  CAS  Google Scholar 

  • Kumar AV, Prasad S, Rao KN, Rao GR (1983) Gibberellin-like substances in seed and leachates of black gram (Phaseolus mungo L.) Proc Indiana Acad Sci 92:397–402

    CAS  Google Scholar 

  • Lin S, Shen F, Young C (2011) Rapid detection and identification of free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie Van Leeuwenhoek 99:837–844

    Article  PubMed  CAS  Google Scholar 

  • Links MG, Demeke T, Gräfenhan HJE, Hemmingsen SM, Dumonceaux TL (2014) Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganism within a shared epiphytic microbiome of Triticum and Brassica seeds. New Phytol 202:542–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013) Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346:146–154

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 89:386. https://doi.org/10.1186/1471-2105-9-386

    Article  CAS  Google Scholar 

  • Michiels K, Croes C, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246

    Article  CAS  Google Scholar 

  • Ofek M, Hadar Y, Minz D (2012) Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 7:e40117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okon Y, Labanderra-Gonzalez C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Oliveira LR, Rodrigues EP, Marcelino-Guimarães FC, Oliveira ALM, Hungria M (2013) Fast induction of biosynthetic polysaccharide genes IpzA, IpxE, RkpI of Rhizobium sp strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Funct Integr Genomics 13:275–283

    Article  PubMed  CAS  Google Scholar 

  • Pagán I, Montes N, Milgroom MG, García F (2014) Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLOS Pathogen 10:e1004293

    Article  CAS  Google Scholar 

  • Palma A, Pereyra CM, Moreno Ramirez LM, Xiqui Vázquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM (2012) Denitrification-derived nitric oxide modulation biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett 338:77–85

    Article  CAS  Google Scholar 

  • Ralser M, Querfurth R, Warnatz H-J, Lehrach H, Yaspo M-L, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  PubMed  CAS  Google Scholar 

  • Rocha RO, Morais JKS, Oliveira JTA, Oliveira HD, Sousa DO, Souza CE, Moreno FB, Monteiro-Moreira AC, de Souza Júnior JD, de Sá MF, Vasconcelos IM (2015) Proteome of soybean seed exudate contains plant defense-related proteins active against the root-knot nematode Meloidogyne inognita. J Agric Food Chem 63:5335–5343

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Cáceres E (1982) An improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Sabir A, Yazici MA, Kara Z, Sahin F (2011) Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria. J Sci Food Agric 92:2148–2153

    Article  CAS  Google Scholar 

  • Salomone G, Döberriner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soils 21:193–196

    Article  Google Scholar 

  • Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp to soybean seed exudate in vitro and in soil. Can J Microbiol 31:570–574

    Article  Google Scholar 

  • Short GE, Lacy ML (1975) Carbohydrate exudation and pea seeds: effect of cultivar, seed age, seed color, and temperature. Phytophathology 66:182–187

    Article  Google Scholar 

  • Thibivilliers S, Joshi T, Campbell KR, Scheffler B, Xu D, Cooper B, Nguyen HT, Stacey G (2009) Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appedniculatus infection. BMC Plant Biol 9:9–22

    Article  CAS  Google Scholar 

  • Tilman D, Blazer C, Hill J, Befort B (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264

    Article  PubMed  Google Scholar 

  • Trujillo-Roldan M, Valdez-Cruz N, Gonzale-Monterrubio C, Acevedo-Sanchez E, Martinez-Salinas C, García-Cabrera RI, Gamboa-Suasnavart RA, Marín-Palacio LD, Villegas J, Blancas-Cabrera A (2013) A scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Appl Microbiol Biotech 97:9665–9674

    Article  CAS  Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53:410–415

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yaryura PM, León M, Correa OS, Kerber NL, Pucheu NL, Garíca AF (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Lemon for help with plant cultivation. This study was supported with funding from the National Institutes of Health awarded to CEB (GM099703) and from the United States Department of Agriculture-National Institute of Food and Agriculture (NIFA 2017-67013-26523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl E. Bauer.

Ethics declarations

The authors state that there are no conflicts of interest, no research involving human participants and no research involving animals.

Electronic supplementary material

Supplemental Table S1

(PDF 56.4 kb)

Supplemental Fig. S1

(PDF 88.6 kb)

Supplemental Fig. S2

(PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinich, E.A., Bauer, C.E. The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 76, 97–108 (2018). https://doi.org/10.1007/s13199-018-0539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0539-2

Keywords

Navigation