Skip to main content

Advertisement

Log in

Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Large areas in the extra-Andean region in the forest - steppe ecotone in “Northwestern Argentinean Patagonia” have been replaced by plantations of the exotic conifer Pinus ponderosa which modify soils physical and chemical factors and alter the biodiversity. Considering that in the region occur saprophytic soilborne actinobacteria that play important role as the fixation of atmospheric nitrogen (N2) in symbiosis with native plant species and the production of bioactive molecules in plants rhizosphere, we aimed to study the effect of the plantation on the abundance of the N2 fixer Frankia and on the genus diversity of cultivable rhizospheric actinobacteria. The study was performed with soils of six paired sites with pine plantations and natural neighbor areas (including steppes or shrublands). Abundance of infective Frankia was estimated by evaluating the nodulation capacity of soils, through a plant bioassay using Ochetophila trinervis as trap plant. Isolation trials for saprophytic actinobacteria were performed by applying chemotactic and successive soils dilutions methods. We concluded that P. ponderosa afforestation affect soil actinobacteria. This was mainly evidenced by a decrease in the Frankia nodulation capacity in O. trinervis, which was related to plantation age, to lower soil carbon and nitrogen content, higher available phosphorus, and to a slight decrease in soils pH. Pine plantation influence on the cultivable saprophytic actinobacteria was less clear. The study highlights the importance of soils as source of Frankia and rhizospheric actinobacteria in relation to disturbance caused by pine plantation in natural environments with native actinorhizal plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • AIC Autoridad Interjurisdiccional de las Cuencas de los ríos Limay (2017) Neuquén y Negro. http://www.aic.gov.ar/sitio/estaciones.aspx. Accessed 15 Apr 2017

  • Araujo PI, Austin AT (2015) A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina. J Ecol 103(6):1408–1420

    Article  CAS  Google Scholar 

  • Araujo PI, Yahdjian L, Austin AT (2012) Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168(1):221–230

    Article  PubMed  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  PubMed  CAS  Google Scholar 

  • Boelcke O, Correa MN, Moore DM, Roig FA (1985) Catálogo de las Plantas Vasculares. Transecta Botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Arg), Instituto de la Patagonia (Chile) y Royal Society (Gran Bretaña), Buenos Aires, pp 733

  • Caballé G, Fernández ME, Gyenge J, Lantschner V, Rusch V, Letourneau F, Borrelli L (2016) Silvopastoral systems based on natural grassland and ponderosa pine in northwestern Patagonia, Argentina. In: Peri P, Dube F, Varella A (eds) Silvopastoral systems in southern south America. Advances in agroforestry, vol 11. Springer, Cham, pp 89–115

    Chapter  Google Scholar 

  • Cardoso BM, Chaia EE, Raffaele E (2010) Are northwestern Patagonian “mallín” wetland meadows reservoirs of Ochetophila trinervis infective Frankia? Symbiosis 52:11–19

    Article  Google Scholar 

  • Chaia EE (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant Soil 205:99–102

    Article  CAS  Google Scholar 

  • Chaia EE, Ribeiro Guevara S, Rizzo A, Arribére M (2005) Occurrence of Discaria trinervis nodulating Frankia in dated sediments of glacial Andean lakes. Symbiosis 39:67–75

    Google Scholar 

  • Chaia EE, Fontenla SB, Vobis G, Wall LG (2006) Infectivity of soilborne Frankia and mycorrhizae in Discaria trinervis along a vegetation gradient in Patagonian soil. J Basic Microbiol 46(4):263–274

    Article  PubMed  Google Scholar 

  • Chaia EE, Solans M, Vobis G, Wall LG (2007) Infectivity variation of Discaria trinervis-nodulating Frankia in Patagonian soil according to season and storage conditions. Physiol Plant 130:357–363

    Article  CAS  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51:201–226

    Article  Google Scholar 

  • Chaia EE, Sosa MC, Raffaele E (2012) Vertebrate faeces as sources of nodulating Frankia in Patagonia. Symbiosis 56:139–145

    Article  Google Scholar 

  • Cho S, Han J, Seong CN, Kim SB (2006) Phylogenetic diversity of acidophilic sporoActinobacteria isolated from various soils. J Microbiol 44(6):600–606

    PubMed  CAS  Google Scholar 

  • Cusato MS, Tortosa RD (1998) Host specificity of Frankia from actinorhizal plant soils of south America. Φyton 62:231–236

    Google Scholar 

  • Davies FL, Williams ST (1970) Studies on the ecology of actinomycetes in soil: I. The occurrence and distribution of actinomycetes in a pine forest soil. Soil Biol Biochem 2(4):227–238

    Article  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawloski K, Newton WE (eds) Nitrogen fixation: origins, applications, and research progress, vol. 6. Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 199–234

    Chapter  Google Scholar 

  • Defrieri RL, Sarti G, Tortarolo MF, Escobar-Ortega J, García de Salamone I, D’Auria F, Effron D (2011) Biochemical and microbiological properties of Argentinean Patagonia soil with implanted forest species. J Soil Sci Plant Nutr 11(3):111–124

    Google Scholar 

  • Gauthier D, Jaffré T, Prin Y (2000) Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur J Soil Biol 36(3):169–175

    Article  Google Scholar 

  • Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp CG (eds) Methods of soil analysis: part 4 physical methods. SSSA Book Ser. 5.4. SSSA, Madison, pp 255–293

    Google Scholar 

  • Ghermandi L, Franzese J, Gonzalez SL, de Torres Curth MI, Ruete A (2013) Disentangling Fabiana imbricata (Solanaceae) regeneration: the importance of disturbance and rainfall. J Arid Environ 97:9–13

    Article  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Gyenge J, Fernández ME (2014) Patterns of resource use efficiency in relation to intra-specific competition, size of the trees and resource availability in ponderosa pine. For Ecol Manag 312:231–238

    Article  Google Scholar 

  • Gyenge JE, Fernández ME, Rusch V, Sarasola M, Schlichter TM (2010) Towards a sustainable forestry development in Patagonia: truths and myths of environmental impacts of plantations with fast growing conifers. Am J Plant Sci Biotechnol 3:9–22

    Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70(9):5057–5065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn D, Nickel A, Dawson J (1999) Assessing Frankia populations in plants and soil using molecular methods FEMS Microbiol Ecol 29:215–227

  • Hess LJ, Austin AT (2017) Pine afforestation alters rhizosphere effects and soil nutrient turnover across a precipitation gradient in Patagonia, Argentina. Plant Soil 415(1–2):449–464

    Article  CAS  Google Scholar 

  • Huss-Danell K (1978) Nitrogenase activity measurements in intact plants of Alnus incana. Physiol Plant 43:372–376

    Article  CAS  Google Scholar 

  • Huss-Danell K (1997) Tansley review no 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Jeong S-C, Myrold DD (2001) Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol Biochem 33:931–941

    Article  CAS  Google Scholar 

  • Martin KJ, Posavatz NJ, Myrold DD (2003) Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil 254(1):187–192

    Article  CAS  Google Scholar 

  • Maunuksela L, Zepp K, Koivula T, Zeyer J, Haahtela K, Hahn D (1999) Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol Ecol 28(1):11–21

    Article  CAS  Google Scholar 

  • Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonia ecosystems. Ecol Austral 8:167–181

    Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115:189–192

    Article  PubMed  CAS  Google Scholar 

  • Myrold DD, Huss-Danell K (1994) Population dynamics of Alnus-infective Frankia in a forest soil with and without host trees. Soil Biol Biochem 26:533–540

    Article  Google Scholar 

  • Myrold DD, Hilger AB, Huss-Danell K, Martin KJ (1994) Use of molecular methods to enumerate Frankia in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. John Wiley & Sons, Chichester, pp 127–136

    Google Scholar 

  • Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16(3):645–661

    Article  Google Scholar 

  • Nuñez MA, Raffaele E (2007) Afforestation causes changes in post-fire regeneration in native shrubland communities of northwestern Patagonia, Argentina. J Veg Sci 18(6):827–834

    Article  Google Scholar 

  • Nuñez MA, Relva MA, Simberloff D (2008) Enemy release or invasional meltdown? Deer preference for exotic and native trees on Isla Victoria, Argentina. Austral Ecol 33(3):317–323

    Article  Google Scholar 

  • Nuñez M, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90(9):2352–2359

    Article  PubMed  Google Scholar 

  • Paruelo JM, Beltran A, Jobbagy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8(2):85–101

    Google Scholar 

  • Raffaele E, Schlichter TM (2000) Efectos de las plantaciones de pino ponderosa sobre la heterogeneidad de micrositios en estepas del Noroeste patagónico. Ecol Austral 10:151–158

    Google Scholar 

  • Raffaele E, Núñez M, Relva M (2015) Plantaciones de coníferas exóticas en Patagonia: los riesgos de plantar sin un manejo adecuado. Ecol Austral 25(2):89–92

    Google Scholar 

  • Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16(3):473–481

    Article  Google Scholar 

  • Salgado Salomón MES, Barroetaveña C, Rajchenberg M (2011) Do pine plantations provide mycorrhizal inocula for seedlings establishment in grasslands from Patagonia, Argentina? New For 41(2):191–205

    Article  Google Scholar 

  • Samant SS, Dawson JO, Hahn D (2015) Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres. Syst Appl Microbiol 38(7):501–505

    Article  PubMed  CAS  Google Scholar 

  • Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Peña E (2010) Spread and impact of introduced conifers in south America: lessons from other southern hemisphere regions. Austral Ecol 35(5):489–504

    Article  Google Scholar 

  • Smolander A, Sundman V (1987) Frankia in acid soils of forests devoid of actinorhizal plants. Physiol Plant 70:297–303

    Article  Google Scholar 

  • Smolander A, Van Dijk C, Sundman V (1988) Survival of Frankia introduced into soil. Plant Soil 106:65–72

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Solans M, Vobis G (2003) Actinomycetes saprofíticos asociados a la rizósfera y rizoplano de Discaria trinervis. Ecol Austral 13:97–107

    Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    Article  CAS  Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) (1996) Methods of soil analysis. Part 3. Chemical methods. Book series 5. SSSA, ASA, Madison, Wisconsin

    Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2002) Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153(1):43–51

    Article  CAS  Google Scholar 

  • Van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41(3):392–416

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk C (1984) Ecological aspects of spore formation in the Frankia-Alnus symbiosis. Dissertation Leiden State University

  • Wilke BM (2005) Determination of chemical and physical soil properties. In: Margesin R, Schinner F (eds) Soil biology, vol. 5 Manual for soil analysis. Springer-Verlag, Berlin, pp 47–95

    Google Scholar 

  • Wollum AG, Youngberg CT, Chichester FW (1968) Relation of previous timber stand age to nodulation of Ceanothus velutinus. For Sci 14:114–118

    Google Scholar 

  • Woomer PL (1994) Most probable number counts. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. Book series 5. ASA, SSSA, Wisconsin, pp 59–79

    Google Scholar 

  • Youngberg CT, Wollum AG (1976) Nitrogen accretion in developing Ceanothus velutinus stands. Soil Sci Soc Am J 40(1):109–112

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edition. Prentice Hall Inc, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees that contributed to improve the quality of the paper. Financial support for this study was provided through grants by Universidad Nacional del Comahue. M. Solans and C. Mestre are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia E. Chaia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arancibia, N.B., Solans, M., Mestre, M.C. et al. Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina. Symbiosis 76, 129–137 (2018). https://doi.org/10.1007/s13199-018-0538-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-018-0538-3

Keywords