, Volume 75, Issue 1, pp 29–38 | Cite as

Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola

  • J. R. Saucedo
  • R. C. Ploetz
  • J. L. Konkol
  • M. Ángel
  • J. Mantilla
  • O. Menocal
  • D. Carrillo


Ambrosia beetles subsist on fungal symbionts that they carry to, and cultivate in, their natal galleries. These symbionts are usually saprobes, but some are phytopathogens. Very few ambrosial symbioses have been studied closely, and little is known about roles that phytopathogenic symbionts play in the life cycles of these beetles. One of the latter symbionts, Raffaelea lauricola, causes laurel wilt of avocado, Persea americana, but its original ambrosia beetle partner, Xyleborus glabratus, plays an uncertain role in this pathosystem. We examined the response of a putative, alternative vector of R. lauricola, Xyleborus bispinatus, to artificial diets of R. lauricola and other ambrosia fungi. Newly eclosed, unfertilized females of X. bispinatus were reared in no-choice assays on one of five different symbionts or no symbiont. Xyleborus bispinatus developed successfully on R. lauricola, R. arxii, R. subalba and R. subfusca, all of which had been previously recovered from field-collected females of X. bispinatus. However, no development was observed in the absence of a symbiont or on another symbiont, Ambrosiella roeperi, recovered from another ambrosia beetle, Xylosandrus crassiusculus. In the no-choice assays, mycangia of foundress females of X. bispinatus harbored significant colony-forming units of, and natal galleries that they produced were colonized with, the respective Raffaelea symbionts; with each of these fungi, reproduction, fecundity and survival of the beetle were positively impacted. However, no fungus was recovered from, and reproduction did not occur on, the A. roeperi and no symbiont diets. These results highlight the flexible nature of the ambrosial symbiosis, which for X. bispinatus includes a fungus with which it has no evolutionary history. Although the “primary” symbiont of the neotropical X. bispinatus is unclear, it is not the Asian R. lauricola.


Nutritional symbiont Laurel wilt Avocado Raffaelea lauricola Xyleborus bispinatus 



We thank James Colee for advice on statistical analyses, and Randy Fernandez for producing Figs. 1 and 2. This work was supported, in part, by NIFA grant# 2015-51181-24257 and a scholarship to JRSC from the Mexican government (CONACYT).


  1. Atkinson TH, Carrillo D, Duncan RE, Peña JE (2013) Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 3669:96–100.
  2. Baker JM (1963) Ambrosia beetles and their fungi with special reference to Platypus cylindrus Fabricius. Symposium Society General Microbiology 13:232–265Google Scholar
  3. Baker JM, Norris DM (1968) A complex of fungi mutualistically involved in the nutrition of the ambrosia beetle Xyleborus ferrugineus. J Invertebr Pathol 11:246–250. CrossRefGoogle Scholar
  4. Bateman C, Sigut M, Skelton J, Smith KE, Hulcr J (2016) Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ Entomol 45:883–889. CrossRefPubMedGoogle Scholar
  5. Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66:213–236. CrossRefGoogle Scholar
  6. Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–195CrossRefPubMedGoogle Scholar
  7. Biedermann PH (2010) Observations on sex ratio and behavior of males in Xyleborinus saxesenii Ratzeburg (Scolytinae, Coleoptera). Zookeys 56:253–267.
  8. Biedermann PHW, Klepzig KD, Taborsky M, Six DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetles Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol Ecol 83:711–723. CrossRefPubMedGoogle Scholar
  9. Bleiker KP, Potter SE, Lauzon CR, Six DL (2009) Transport of fungal symbionts by mountain pine beetles. Can Entomol 141:503–514. CrossRefGoogle Scholar
  10. Campbell AS, Ploetz RC, Dreaden T, Kendra P, Montgomery W (2016) Geographic variation in mycangial communities of Xyleborus glabratus. Mycologia 108:657–667. CrossRefPubMedGoogle Scholar
  11. Carrillo D, Duncan R, Peña JE (2012) Ambrosia beetles (Curculionidae: Scolytinae) that breed in avocado wood in Florida. Fla Entomol 95:573–579. CrossRefGoogle Scholar
  12. Carrillo D, Duncan RE, Ploetz JN, Campbell A, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62. CrossRefGoogle Scholar
  13. Cognato AI, Hulcr J, Dole SA, Jordal BH (2011) Phylogeny of haplo-diploid, fungus growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. Zool Scr 40:174–186. Google Scholar
  14. Cooperband MF, Stouthamer R, Carrillo D, Eskalen A, Thibault T, Cossé AA, Castrillo LA, Vandenberg JD, Rugman JP (2016) Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the U.S.A., reared on an ambrosia beetle artificial diet. Agric For Entomol 18:223–237. CrossRefGoogle Scholar
  15. R Development Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria. The R foundation for statistical computing. ISBN: 3-900051-07-0.
  16. Douglas AE (2011) Lessons from studying insect symbiosis. Cell Host Microbe 10:359–367. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dreaden TJ, Davis JM, de Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA (2014a) Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978. CrossRefPubMedGoogle Scholar
  18. Dreaden TJ, Davis JM, Harmon CL, Ploetz RC, Palmateer AJ, Soltis PS, Smith JA (2014b) Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis 98:379–383. CrossRefGoogle Scholar
  19. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252CrossRefGoogle Scholar
  20. Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027. CrossRefPubMedGoogle Scholar
  21. Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Ayfieldiii AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224. CrossRefGoogle Scholar
  22. Francke-Grosmann H (1956) Hautdrusen als Trager der Pilzesymbiose bei Ambrosiakafern. Z Morphol Okol Tiere 45:275–308CrossRefGoogle Scholar
  23. Francke-Grosmann H (1963) Some new aspects in forest entomology. Annu Rev Entomol 8:415–438. CrossRefGoogle Scholar
  24. Francke-Grosmann H (1967) Ectosymbiosis in wood-inhabiting insects. Symbiosis 2:141–205CrossRefGoogle Scholar
  25. Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausov E, Maoz Y, Margalit O, Protasov A, Mendel Z (2016) Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis 68:115–128. CrossRefGoogle Scholar
  26. Gebhardt H, Bergerow D, Oberwinkler F (2004) Identification of the ambrosia fungus of Xyleborus monographus and X. dryographus (Curculionidae, Scolytinae). Mycol Prog 3:95–102. CrossRefGoogle Scholar
  27. Gottlieb D, Lubin Y, Harari AR (2014) The effect of females mating status on male offspring traits. Behav Ecol Sociobiol 68:701–710. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Harrington TC (1981) Cycloheximide sensivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129. CrossRefGoogle Scholar
  29. Harrington, T. C. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. pp. 257-291. in: Insect-Fungal Associations. Ecology and Evolution. eds. Vega, F.E. and Blackwell, M. Oxford Univ PressGoogle Scholar
  30. Harrington TC, Fraedrich SW (2010) Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:1118–1123. CrossRefPubMedGoogle Scholar
  31. Hughes MA, Inch SA, Ploetz RC, Er HL, van Bruggen AH, Smith JA (2015) Response of swampbay, Persea palustris, and avocado, Persea americana, to various concentrations of the laurel wilt pathogen, Raffaelea lauricola. For Pathol 45:111–119. CrossRefGoogle Scholar
  32. Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: From evolutionary ecology to practical management. Annu Rev Entomol 62:285–303. CrossRefPubMedGoogle Scholar
  33. Hulcr J, Rountree NR, Diamond SE, Stelinski LL, Fierer N, Dunn RR (2012) Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64:784–793. CrossRefPubMedGoogle Scholar
  34. Kendra PE, Owens D, Montgomery WS, Narvaez TI, Bauchan GR, Schnell EQ, Tabanca N, Carrillo D (2017) α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 12(6): e0179416Google Scholar
  35. Kingsolver JG, Norris DM (1977) The interaction of Xyleborus ferrugineus (Coleoptera: Scolytidae) behavior and initial reproduction in relation to its symbiotic fungi. Ann Entomol Soc Am 70:1–4. CrossRefGoogle Scholar
  36. Kostovcik M, Bateman C, Kolarik M, Stelisnki LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from pyrosequencing. ISME J 9:126–138. CrossRefPubMedGoogle Scholar
  37. Leach JG, Hodson AC, Chilton SJP, Christensen CM (1940) Observations on two ambrosia beetles and their associated fungi. Phytopathology 30:227–236Google Scholar
  38. Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329. CrossRefPubMedGoogle Scholar
  39. Menocal, O., Cruz, L., Kendra, P., Crane, J., Ploetz, R., Carrillo, D. 2017. Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environmental Entomology (In press)Google Scholar
  40. Mizuno T, Kajimura H (2009) Effects of ingredients and structure of semi-artificial diet on the reproduction of an ambrosia beetle, Xyleborus pfeili (Ratzeburg) (Coleoptera: Curculionidae: Scolytinae). Appl Entomol Zool 44:363–370. CrossRefGoogle Scholar
  41. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. CrossRefGoogle Scholar
  42. Normark BB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48:397–423. CrossRefPubMedGoogle Scholar
  43. Norris, D. M. 1972. Dependence of fertility and progeny development of Xyleborus ferrugineus upon chemicals from its symbiotes, Pp. 299-309. In: Insect and mite nutrition. Rodriguez, J. G. (ed). North-Holland Pub. Co. AmsterdamGoogle Scholar
  44. Norris, D. M. 1979. The mutualistic fungi of Xyleborini beetles In: Insect–Fungus Symbiosis: Nutrition, Mutualism, and Commensalism. Batra, L. R. (ed). Wiley: New York; 53–63.63Google Scholar
  45. Ott, E. P. 2007. Chemical ecology, fungal interactions and forest stand correlations of the exotic Asian ambrosia beetle, Xylosandrus crassiusculus. M. S. Thesis, Louisiana State UniversityGoogle Scholar
  46. Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Ambrosia and bark beetle-associated tree diseases: Black swan events in the pathology? Plant Dis 95:856–872. CrossRefGoogle Scholar
  47. Ploetz RC, Hughes MA, Kendra PE, Fraedrich SW, Carrillo D, Stelinski LL, Hulcr J, Mayfield AE III, Dreaden TL, Crane JH, Evans EA, Schaffer BA, Rollins J (2017a) Recovery plan for laurel wilt of avocado, caused by Raffaelea lauricola. Plant Health Prog 18:51–77. Google Scholar
  48. Ploetz RC, Kendra PE, Choudhury RA, Rollins JA, Campbell A, Garrett K, Hughes MA, Dreaden T (2017b) Laurel wilt in native and agricultural ecosystems: Understanding the drivers and scales of complex pathosystems. Forests 8:48.
  49. Ploetz RC, Konkol J, Narvaez T, Duncan R, Saucedo JR, Campbell A, Mantilla J, Carrillo D, Kendra PE (2017c) Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetles in Florida, USA. J Econ Entomol:1–8.
  50. Six, D.L. 2003. Bark beetle-fungus symbioses. Pages 97-114 in. Insect Symbiosis. K. Bourtzis, and T. Miller, eds. CRC Press, Boca RatonGoogle Scholar
  51. Six DL, Paine TD (1998) Effects on mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • J. R. Saucedo
    • 1
  • R. C. Ploetz
    • 1
  • J. L. Konkol
    • 1
  • M. Ángel
    • 2
  • J. Mantilla
    • 1
  • O. Menocal
    • 1
  • D. Carrillo
    • 1
  1. 1.Tropical Research and Education CenterUniversity of FloridaHomesteadUSA
  2. 2.Facultad de Agrobiología Presidente Juárez-Universidad Michoacana de San Nicolas de HidalgoUruapanMexico

Personalised recommendations