Advertisement

Symbiosis

, Volume 75, Issue 1, pp 39–50 | Cite as

Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content

  • Wisnu Adi Wicaksono
  • Catherine E. Sansom
  • E. Eirian Jones
  • Nigel B. Perry
  • Jana Monk
  • Hayley J. Ridgway
Article
  • 261 Downloads

Abstract

Leptospermum scoparium or mānuka is a New Zealand native medicinal plant that produces essential oils with antimicrobial properties. This study investigated the arbuscular mycorrhizal fungi (AMF) community in mānuka by culture dependent (trap culture) and independent (denaturing gradient gel electrophoresis) approaches. Furthermore, to assess whether mycorrhizal inoculation could alter growth and essential oil composition of mānuka, plants of a single regional chemotype were grown in unsterilized soil and inoculated with five AMF isolates. Leaf essential oil compositions and yields were determined by microscale solvent extraction and gas chromatography-mass spectrometry (GC-MS) analysis. AMF inoculation significantly increased growth compared to uninoculated plants. Qualitative i.e. different relative proportions of compounds, which are distinctive in chemotypes and quantitative (i.e. absolute concentrations of compounds, expressed as mg/g of dry leaf or equivalent) effects of AMF inoculation on mānuka essential oil composition depended on the isolate. AMF inoculation modified the Gammaproteobacterial community on roots and this may have contributed to changes in essential oil composition. Overall, these results demonstrated that AMF can improve the growth of mānuka and affect plant secondary metabolites in leaves, which would be valuable in commercial essential oil production from plantation-grown mānuka.

Keywords

Leptospermum scoparium Arbuscular mycorrhizal fungi GC-MS analysis Essential oils Denaturing gradient gel electrophoresis Gammaproteobacteria 

Notes

Acknowledgement

The authors thank Brent Richards for assistance with the glasshouse experiment; the Brian Mason Scientific and Technical Trust and New Zealand Aid Programme for funding; and farm owners and Christchurch City Council for supplying plant samples.

Supplementary material

13199_2017_506_Fig2_ESM.jpg (193 kb)
Online Resource 1

Soils and roots sampling process for microbial community structure (JPEG 192 kb)

13199_2017_506_MOESM1_ESM.tiff (2.9 mb)
High resolution image (TIFF 2986 kb)
13199_2017_506_Fig3_ESM.jpg (63 kb)
Online Resource 2

Morphotypes M1-M7 (A-G) of representative arbuscular mycorrhizal fungi spores that were isolated using trap cultures. Black bar represents 100 μm (JPEG 63 kb)

13199_2017_506_MOESM2_ESM.tiff (1.6 mb)
High resolution image (TIFF 1607 kb)
13199_2017_506_MOESM3_ESM.pdf (60 kb)
Online Resource 3 Sequenced bands excised from DGGE gel of amplified arbuscular mycorrhizal fungal communities with their highest matches (PDF 59 kb)
13199_2017_506_Fig4_ESM.jpg (210 kb)
Online Resource 4

Nonmetric multidimensional scaling (MDS) plots showing arbuscular mycorrhizal fungal communities associated with Leptospermum scoparium from different regions in New Zealand. Central North Island:green diamond, northern South Island: Central South Island: red square: blue triangle, southern South Island: ●. Abbreviation of sampling location referred to Table 1 (JPEG 210 kb)

13199_2017_506_MOESM4_ESM.tiff (943 kb)
High resolution image (TIFF 943 kb)
13199_2017_506_MOESM5_ESM.pdf (62 kb)
Online Resource 5 Composition of foliage essential oils in Leptospermum scoparium (Canterbury chemotype) after five months growth (n = 6 different arbuscular mycorrhizal fungi inoculation treatments × 4 replicate plants per treatment) (PDF 62 kb)
13199_2017_506_MOESM6_ESM.pdf (66 kb)
Online Resource 6 Mean of foliage essential oils in Leptospermum scoparium (Canterbury chemotype) after five months growth from each treatment (n = 6 different arbuscular mycorrhizal fungi inoculation treatments × 4 replicate plants per treatment) (PDF 65 kb)
13199_2017_506_MOESM7_ESM.pdf (43 kb)
Online Resource 7 Pearson correlation analysis of 41 essential oil compounds used to determine the effect of arbuscular mycorrhizal fungi inoculation treatments toward essential oil composition (PDF 42 kb)

References

  1. Adams, R. P. (2007) Identification of essential oil composition by gas chromatography/mass spectrometry, 4th edn Allured Publishing Corporation, IllinoisGoogle Scholar
  2. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10CrossRefPubMedGoogle Scholar
  3. Baylis GTS, McNabb RFR, Morrison TM (1963) The mycorrhizal nodules of podocarps. T Brit Mycol Soc 46:378–384CrossRefGoogle Scholar
  4. Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181CrossRefGoogle Scholar
  5. Chen YL, Brundrett MC, Dell B (2000) Effects of ectomycorrhizas and vesicular–arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–555CrossRefGoogle Scholar
  6. Clarke KR and Warwick RM (1994) An approach to statistical analysis and interpretation. Change in Marine Communities 2nd edn. Natural Environment Research Council, Plymouth Marine Laboratory, PlymouthGoogle Scholar
  7. Cooper KM (1976) A field survey of mycorrhizas in New Zealand ferns. NZ J Bot 14:169–181CrossRefGoogle Scholar
  8. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. Var. Genovese. Mycorrhiza 16:485–494CrossRefPubMedGoogle Scholar
  9. Cornejo P, Azcon-Aguilar C, Barea JM, Ferrol N (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 241:265–270CrossRefPubMedGoogle Scholar
  10. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249CrossRefPubMedGoogle Scholar
  11. Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938CrossRefPubMedPubMedCentralGoogle Scholar
  12. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Tredici SM, Talà A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841CrossRefPubMedGoogle Scholar
  13. Dharni S, Srivastava AK, Samad A et al (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. Bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439CrossRefPubMedGoogle Scholar
  14. Douglas MH, van Klink JW, Smallfield BM et al (2004) Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65:1255–1264CrossRefPubMedGoogle Scholar
  15. Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933PubMedPubMedCentralGoogle Scholar
  16. Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702PubMedGoogle Scholar
  17. Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. T Brit Mycol Soc 68:341–356CrossRefGoogle Scholar
  18. Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6:643–654CrossRefGoogle Scholar
  19. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63CrossRefGoogle Scholar
  20. Janos DP, Scott J, Aristizábal C, Bowman DMJS (2013) Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms. PLoS One 8:e57716CrossRefPubMedPubMedCentralGoogle Scholar
  21. Johnson PN (1977) Mycorrhizal endogonaceae in a New Zealand forest. New Phytol 78:161–170CrossRefGoogle Scholar
  22. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311CrossRefPubMedGoogle Scholar
  23. Karagiannidis N, Thomidis T, Panou-Filotheou E (2011) Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. J Agric Sci 4:137–144Google Scholar
  24. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp.,Lamiaceae). Mycorrhiza 16:443–446Google Scholar
  25. Killeen DP, Klink JW, Smallfield BM, Gordon KC, Perry NB (2015) Herbicidal β-triketones are compartmentalized in leaves of Leptospermum species: localization by Raman microscopy and rapid screening. New Phytol 205:339–349CrossRefPubMedGoogle Scholar
  26. Killeen DP, Larsen L, Dayan FE, Gordon KC, Perry NB, van Klink JW (2016) Nortriketones: antimicrobial Trimethylated Acylphloroglucinols from Mānuka (Leptospermum scoparium). J Nat Prod 79:564–569CrossRefPubMedGoogle Scholar
  27. Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581CrossRefPubMedGoogle Scholar
  28. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984CrossRefPubMedGoogle Scholar
  29. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349CrossRefPubMedGoogle Scholar
  30. Lis-Balchin M, Hart SL, Deans SG (2000) Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother Res 14:623–629CrossRefPubMedGoogle Scholar
  31. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  32. McGimpsey JA, Douglas MH, Van Klink JW et al (1996) Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Fragance J 9:347–352CrossRefGoogle Scholar
  33. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  34. McKenzie EHC, Johnston PR, Buchanan PK (2006) Checklist of fungi on teatree (Kunzea and Leptospermum species) in New Zealand. New Zeal J Bot 44:293–335CrossRefGoogle Scholar
  35. Medina-Holguín AL, Holguín FO, Micheletto S et al (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69:919–927CrossRefPubMedPubMedCentralGoogle Scholar
  36. Miller SP, Sharit RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Funct Ecol 14:738–748CrossRefGoogle Scholar
  37. Moyersoen B, Fitter AH (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253CrossRefGoogle Scholar
  38. Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392CrossRefPubMedGoogle Scholar
  39. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  40. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  41. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefPubMedGoogle Scholar
  42. Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438CrossRefPubMedPubMedCentralGoogle Scholar
  43. Perry NB, Brennan NJ, Van Klink JW et al (1997) Essential oils from New Zealand manuka and kanuka: chemotaxonomy of Leptospermum. Phytochemistry 44:1485–1494CrossRefGoogle Scholar
  44. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158IN16–161IN18CrossRefGoogle Scholar
  45. Porter NG, Wilkins AL (1990) Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 50:407–415CrossRefGoogle Scholar
  46. Redecker D, Hijri I, Wiemken A (2003) Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot 38:113–124CrossRefGoogle Scholar
  47. Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061CrossRefPubMedGoogle Scholar
  48. Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria Ssp. Arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552CrossRefPubMedGoogle Scholar
  49. Rydlová J, Jelínková M, Dušek K, Dušková E, Vosátka M, Püschel D (2016) Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26:123–131CrossRefPubMedGoogle Scholar
  50. Ryszka P, Błaszkowski J, Jurkiewicz A, Turnau K (2010) Arbuscular mycorrhiza of Arnica montana under field conditions—conventional and molecular studies. Mycorrhiza 20:551–557CrossRefPubMedGoogle Scholar
  51. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbial Ecol 39:23–32CrossRefGoogle Scholar
  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  53. Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629CrossRefPubMedGoogle Scholar
  54. Thompson JD, Chalchat JC, Michet A, Linhart YB, Ehlers B (2003) Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol 29:859–880CrossRefPubMedGoogle Scholar
  55. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304CrossRefPubMedGoogle Scholar
  56. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936CrossRefGoogle Scholar
  57. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051CrossRefPubMedGoogle Scholar
  58. Viljoen AM, Subramoney S, Van Vuuren SF, Başer KHC, Demirci B (2005) The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaceae) leaf essential oils. J Ethnopharmacol 96:271–277CrossRefPubMedGoogle Scholar
  59. Wang XM, Yang B, Ren CG, Wang HW, Wang JY, Dai CC (2015) Involvement of abscisic acid and salicylic acid in signal cascade regulating bacterial endophyte-induced volatile oil biosynthesis in plantlets of Atractylodes lancea. Physiol Plant 153:30–42CrossRefPubMedGoogle Scholar
  60. Weijtmans K, Davis M, Clinton P, Kuyper TW, Greenfield L (2007) Occurrence of arbuscular mycorrhiza and ectomycorrhiza on Leptospermum scoparium from the Rakaia catchment, Canterbury. New Zeal J Ecol 31:255–260Google Scholar
  61. Wicaksono WA, Jones EE, Monk J, Ridgway HJ (2016) The bacterial signature of Leptospermum scoparium (mānuka) reveals core and accessory communities with bioactive properties. PLoS One 11:e0163717CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhou JY, Li X, Zheng JY, Dai CC (2016) Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiol Biochem 101:132–140CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Wisnu Adi Wicaksono
    • 1
  • Catherine E. Sansom
    • 2
  • E. Eirian Jones
    • 1
  • Nigel B. Perry
    • 2
  • Jana Monk
    • 1
  • Hayley J. Ridgway
    • 1
  1. 1.Faculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
  2. 2.The New Zealand Institute for Plant & Food Research Limited, Department of ChemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations