, Volume 74, Issue 3, pp 177–187 | Cite as

Arbuscular mycorrhizal fungi enhance antioxidant capacity of in vitro propagated garden thyme (Thymus vulgaris L.)

  • Ely Zayova
  • Ira StanchevaEmail author
  • Maria Geneva
  • Marieta Hristozkova
  • Lyudmila Dimitrova
  • Maria Petrova
  • Mariyana Sichanova
  • Ivan Salamon
  • Silvia Mudroncekova


Garden thyme (Thymus vulgaris L., Lamiaceae) is an important aromatic herb used for its medicinal values including antioxidant and antimicrobial properties. The present study was performed to analyze the changes in natural antioxidants after inoculation of in vitro propagated garden thyme plants with arbuscular mycorrhizal fungi (AMF). An efficient and low-cost protocol for large-scale multiplication of this aromatic plant was developed. The explants were cultured on full and half strength Murashige and Skoog (MS) medium containing indole-3-butyric acid (IBA). The maximum number of shoots and roots was obtained on ½ MS medium supplemented with 0.1 mg L−1 IBA after 4 weeks of culture. The successfully adapted in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). Plants were then transferred into field conditions. Mycorrhizal fungi enhanced the activity of some soil enzymes, acid and alkaline phosphatase, urease as well as the levels of extractable glomalin-related proteins in plant rhizosphere. Arbuscular mycorrhizal associations with higher plants promote the accumulation of antioxidant metabolites such as phenols and flavonoids and increase the activity of antioxidant enzymes. The results from the present study suggest enhanced antioxidant capacity of the inoculated T. vulgaris plants which was due mainly to increased accumulation of phenolic compounds (total phenols and flavonoids) together with stimulation of the activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPO).


Antioxidants Arbuscular mycorrhizal fungi Garden thyme In vitro culture Micro propagation Soil enzymes 



Arbuscular mycorrhizal fungi


Ascorbate peroxidase






Ferric ion reducing antioxidant power


Guaiacol peroxidase


Murashige and Skoog


Non-mycorrhizal plants


Superoxide dismutase




ɑ-naphtalene acetic acid


Indole-3-butyric acid


Indole-3-acetic acid



This study was conducted with financial support from Slovak Research and Development Agency and Bulgarian Science Fund at the Ministry of Education and Science, Bilateral project SK_BG 01/3-30.09.2016.


  1. Abdel Latefa AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233CrossRefGoogle Scholar
  2. Affonso VR, Bizzo HR, Lage CLS, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L. J Agric Food Chem 57:6392–6395. doi: 10.1021/jf900816c CrossRefPubMedGoogle Scholar
  3. Ayari B, Riahi L, Landoulsi A (2013) Variability of phenolic contents in methanolic extracts of Origanum majorana L. organs and effect on antioxidant and antimicrobial activities. Int J Agron Plant Prod 4:2806–2815Google Scholar
  4. Bazylko A, Strzelecka H (2007) A HPTLC densitometric determination of luteolin in Thymus vulgaris and its extracts. Fitotherapia 78:391–395. doi: 10.1016/j.fitote.2007.01.007 CrossRefGoogle Scholar
  5. Beers F, Sizer IF (1952) A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140PubMedGoogle Scholar
  6. Benavente-Garćıa O, Castillo J, Lorente J, Ortũno A, Del Río JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462. doi: 10.1016/S0308-8146(99)00221-6 CrossRefGoogle Scholar
  7. Benzie I, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio.1996.6292 CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427. doi: 10.1016/0038-0717(82)90099-2 CrossRefGoogle Scholar
  10. Coelho N, Gonçalves G-BME, Romano A (2012) Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regul 66:69–74. doi: 10.1007/s10725-011-9630-x CrossRefGoogle Scholar
  11. Daneshvar-Royandezagh S, Khawar KM, Ozcan S (2009) In vitro micropropagation of garden thyme (Thymbra spicata L. var. spicata L.) collected from southeastern Turkey using cotyledon node. Biotechnol Equip 23:1319–1321. doi: 10.1080/13102818.2009.10817661 CrossRefGoogle Scholar
  12. Delcheh SK, Kashefi B, Mohammadhassan R (2014) A review optimization of tissue culture medium medicinal plant: thyme. Int J Farm Alli Sci 3:1015–1019Google Scholar
  13. Dick WA, Tabatabai MA (1984) Kinetic parameters of phosphatases in soils and organic waste materials. Soil Sci 137:7–15CrossRefGoogle Scholar
  14. Dolatabadi HK, Goltapeh EM, Moieni A, Jaimand K, Sardrood BP, Varma A (2011) Effect of Piriformospora indica and Sebacina vermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments. Symbiosis 53:29–35. doi: 10.1007/s13199-010-0104-0 CrossRefGoogle Scholar
  15. Farooqi AHA, Khan A, Sharma S (2003) Effect of kinetin and chlormequat chloride on growth, leaf abscission and essential oil yield in Mentha arvensis. Indian Perfumer 47:359–363Google Scholar
  16. Frankenberger WT, Dick WA (1983) Relationship between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am Proc J 47:945–951CrossRefGoogle Scholar
  17. Fu L, Xu BT, Xu XR, Gan RY, Zhan Y, Xia EQ, Li HB (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129:345–350. doi: 10.1016/j.foodchem.2011.04.079 CrossRefGoogle Scholar
  18. Geneva M, Stancheva I, Boychinova M, Mincheva N, Yonova P (2010) Effects of foliar fertilisation and arbuscular mycorrhizal colonisation on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702. doi: 10.1002/jsfa.3871 PubMedGoogle Scholar
  19. Gianfreda L (2015) Enzymes of importance to rhizosphere process. J Soil Sci Plant Nutr 15:283–306. doi: 10.4067/S0718-95162015005000022 Google Scholar
  20. Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil, Series soil biology, vol 8. Springer-Verlag, Berlin, pp 257–311. doi: 10.1007/3-540-29449-X_12 CrossRefGoogle Scholar
  21. Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314. doi: 10.1104/pp.59.2.309 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  23. Hoffmann E, Teicher K (1961) Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivit/at in B6den. Z Pflanzenernaehr Dtingung Bodenkd 95:55–63CrossRefGoogle Scholar
  24. Hosseini BB, Khoshkhoy M (2005) Effects of media and growth regulators on garden thyme (Thymus vulgaris L.) micropropagation. Iran J Hortic Sci Technol 6:61–68Google Scholar
  25. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2015) Aspects of mycorrhizal colonization in adaptation of sweet marjoram (Origanum majorana L.) grown on industrially polluted soil. Turk J Biol 39:461–468. doi: 10.3906/biy-1408-47 CrossRefGoogle Scholar
  26. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63. doi: 10.1016/j.apsoil.2016.01.008 CrossRefGoogle Scholar
  27. Jackson NE, Franklin RE, Miller RH (1972) Effects of vesicular-arbuscular mycorrhizae on growth and phosphorus content of three agronomic crops. Soil Sci Soc Am Proc 36:64–67CrossRefGoogle Scholar
  28. Justesen U, Knuthsen P (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 73:245–250. doi: 10.1016/S0308-8146(01)00114-5 CrossRefGoogle Scholar
  29. Karalija E, Parić A (2011) The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biol Nyssana 2(1):29–35Google Scholar
  30. Khaosaad T, Vierheilig H, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza increasesthe content of essential oils in oregano (Origanumsp., Lamiaceae). Mycorrhiza 16:443–446. doi: 10.1007/s00572-006-0062-9 CrossRefPubMedGoogle Scholar
  31. Kovačik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320:231–242. doi: 10.1007/s11104-009-9889-0 CrossRefGoogle Scholar
  32. Krämer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188. doi: 10.1016/S0038-0717(99)00140-6 CrossRefGoogle Scholar
  33. Kumar K, Rao IU (2012) Morphophysiologicals problems in acclimatisation of micropropagated plants in ex vitro conditions - a review. J Ornam Hortic Plants 2:271–283Google Scholar
  34. Langhansova L, Marsik P, Landa P, Vanek T (2006) Biotechnology methods for plant biomass production under controlled conditions. Acta Hortic 723:263–268CrossRefGoogle Scholar
  35. Li Y, Xiao-dong L, Jian-guo L (2010) Study on propagation of adventitious bud of Thymus vulgaris. Hubei Agric Sci 3:51–58Google Scholar
  36. Mendes ML, Romano A (1999) In vitro cloning of Thymus vulgaris L. field-grown plants. Acta Hortic 502:303–306CrossRefGoogle Scholar
  37. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  38. Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140. doi: 10.1093/oxfordjournals.pcp.a077268 Google Scholar
  39. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79Google Scholar
  40. Nordine A, El Meskaoui A (2014) Rapid in vitro regeneration and clonal multiplication of Thymus bleicherianus Pomel, a rare and threatened medicinal and aromatic plant in Morocco. Med Aromat Plant 3:145. doi: 10.4172/2167-0412.1000145 Google Scholar
  41. Nordine A, Bousta D, El Khanchoufi A, El Meskaoui A (2013a) An efficient and rapid in vitro propagation system of Thymus hyemalis Lange, a wild medicinal and aromatic plant of Mediterranean region. Int J Pharm Biosci Technol 1:118–129Google Scholar
  42. Nordine A, Tlemcani CR, El Meskaoui A (2013b) Micropropagation of Thymus satureioides Coss. an endangered medicinal plant of Morocco. J Agric Sci Technol Iran 9:421–435Google Scholar
  43. Ozudogru EA, Kaya E, Kirdok E, Issever-Ozturk S (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cell Dev Biol Plant 47:309–320. doi: 10.1007/s11627-011-9347-6 CrossRefGoogle Scholar
  44. Pfeffer H, Dannel F, Römheld V (1998) Are there connection between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiol Plant 104:479–485CrossRefGoogle Scholar
  45. Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161. doi: 10.1016/s0007-1536(70)80110-3
  46. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quatitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi: 10.1006/abio.1999.4019 CrossRefPubMedGoogle Scholar
  47. Prior RL, Cao G, Martin A, Sofic E, McEwen J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of vaccinum species. J Agric Food Chem 46:2686–2693. doi: 10.1021/jf980145d CrossRefGoogle Scholar
  48. Prins CL, Vieira IJC, Freitas SP (2010) Growth regulators and essential oil production. Braz J Plant Physiol 22:91–102Google Scholar
  49. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333. doi: 10.1023/A:1014483303813 CrossRefGoogle Scholar
  50. Rozpadek P, Wezowicz K, Stojakowska A, Malarz J, Surówka E, Sobczyk Ł, Anielska T, Wazny R, Miszalski Z, Turnau K (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112:217–224. doi: 10.1016/j.chemosphere.2014.04.023 CrossRefPubMedGoogle Scholar
  51. Sáez F, Sanchez P, Piqueras A (1994) Micropropagation of Thymus piperella. Plant Cell Tissue Organ Cult 39:269–272CrossRefGoogle Scholar
  52. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:03–21. doi: 10.1023/A:1013386921596 CrossRefGoogle Scholar
  53. Shabnum S, Wagay MG (2011) Micropropagation of different species of thymus. J Res Dev 11:71–80Google Scholar
  54. Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, London, pp 197–215Google Scholar
  55. Stahl-Biskup E, Sáez F (2002) The genus Thymus. Medicinal and aromatic plants – industrial profiles, vol 24. Taylor & Francis, London 330 pGoogle Scholar
  56. Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis part 2 microbiological and biochemical properties SSSA book series no. 5. Soil Science Society of America Inc., Madison, pp 775–833Google Scholar
  57. Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatase produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312. doi: 10.1007/BF00262137 CrossRefGoogle Scholar
  58. Tarraf W, Ruta C, De Cillis F, Tagarelli A, Tedone L, De Mastro G (2015) Effects of mycorrhiza on growth and essential oil production in selected aromatic plants. Ital J Agron 10:160–161. doi: 10.4081/ija.2015.633 CrossRefGoogle Scholar
  59. Tepe B, Sokmen M, Akpulat HA, Sokmen A (2006) Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 95:200–204. doi: 10.1016/j.foodchem.2004.12.031 CrossRefGoogle Scholar
  60. Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50Google Scholar
  61. Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586. doi: 10.1097/00010694-199609000-00003 CrossRefGoogle Scholar
  62. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi: 10.1016/S0308-8146(98)00102-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ely Zayova
    • 1
  • Ira Stancheva
    • 1
    Email author
  • Maria Geneva
    • 1
  • Marieta Hristozkova
    • 1
  • Lyudmila Dimitrova
    • 1
  • Maria Petrova
    • 1
  • Mariyana Sichanova
    • 1
  • Ivan Salamon
    • 2
  • Silvia Mudroncekova
    • 2
  1. 1.Institute of Plant Physiology and GeneticsSofiaBulgaria
  2. 2.Faculty of Humanity and Natural SciencesUniversity of Prešov in PrešovPrešovSlovakia

Personalised recommendations