Skip to main content
Log in

Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector

  • Short Communication
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Larvae of Bradysia agrestis, a phytopathogen-transmitting insect vector in East Asia, were sampled from geographically (ecologically) segregated regions to identify their intestinal fungal flora. A total of 24 fungal strains were isolated from the insect vectors and selected based on morphological differences. In addition, 38 fungal strains were isolated from the ulcerated parts of invaded host plants by the same method, revealing the impact of vector fungal flora on their host plants. For molecular identification of the fungi, internal transcribed spacer (ITS) regions were amplified and sequenced. Their sequences were compared with sequences of other fungal strains obtained from NCBI GenBank, and their phylogeny was determined. The dominant fungal genera in the insect vector were Penicillium (25%), Aspergillus (21%), and Cladosporium (13%). In plant scar lesions, most fungal isolates belonged to the genera Fusarium (31.6%), Phoma (7.8%), Didymella (7.8%), and Epicoccum (7.8%). Fungal genera in vectors or host plant lesions differed by study site. Furthermore, diversity indices by study site showed clear differences based on Margalef’s richness (2.06, 2.40, 3.04), and Menhinick’s (1.89, 2.12, 2.53), and Simpson’s indices (0.14, 0.07, 0.07). In addition, common fungal strains in insect vectors were found to be closely related to members of the genera Cladosporium, Penicillium, or Aspergillus. Among these strains, those showing the highest homology with Aspergillus terreus, which regarded as beneficial fungal genera could be considered ideal paratransgenesis candidates. Some other fungal strains from vectors or ulcerated plant parts from each study site after B. agrestis invasion may be harmful in terms of plant disease or agrifood safety. This study provides information on the fungal microbiota of B. agrestis, an emerging problem in East Asia, and proposes paratransgenesis candidates to control this insect vector. Furthermore, potential transferable pathogens or commensal fungi were revealed by comparing the fungal biota between the insect gut and the ulcerated parts of the invaded host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akbari S, Oshaghi MA, Hashemi-Aghdam SS, Hajikhani S, Oshaghi G, Shirazi MH (2014) Aerobic bacterial community of american cockroach Periplaneta americana, a step toward finding suitable paratransgenesis candidates. J Arthropod Borne Dis 9(1):35–48

    PubMed  PubMed Central  Google Scholar 

  • Alavi P, Starcher MR, Zachow C, Müuller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front. Plant Sci 4:141

    Google Scholar 

  • Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One 7(10):e47968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard PC (2011) The royal entomological society book of British insects. Wiley-Blackwell, United States of America

    Book  Google Scholar 

  • Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. Bull Environ Contam Toxicol 92(3):369–373

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318

    Article  CAS  PubMed  Google Scholar 

  • Brar DS and Sandhui GS (1989) Biology of sciarid fly, Bradisia Tritici (COQ) (Diptera: Siaridae) on termperated mushroom in the Punjob(India). Mushroom Science XII (part II):831-842

  • Brian PW, Curtis PJ, Grove JF, Hemming HG, Mcgowan JC (1946) Gladiolic acid: an antifungal and antibacterial metabolic product of Penicillium gladioli McCull and Thom. Nature 157:697–698

    Article  CAS  PubMed  Google Scholar 

  • Cabral A, Rego C, Nascimento T, Oliveira H, Groenewald JZ, Crous PW (2012) Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol 116(1):62–80

    Article  CAS  PubMed  Google Scholar 

  • Castillo MA, Moya P, Cantín A, Miranda MA, Primo J, Hernández E, Primo-Yúfera E (1999) Insecticidal, anti-juvenile hormone, and fungicidal activities of organic extracts from different Penicillium species and their isolated active components. J Agric Food Chem 47(5):2120–2124

    Article  CAS  PubMed  Google Scholar 

  • Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S (2012) Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop 121(2):129–134

    Article  PubMed  Google Scholar 

  • Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Terenius O (2014) Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Parasit Vectors 7:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Masi M, Evidente M, Evidente A (2015) Fungal phytotoxins with potential herbicidal activity to control Chenopodium album. Nat Prod Commun 10(6):1119–1126

    PubMed  Google Scholar 

  • Davis ND, Wagener E, Dalby DK, Morgan-Jones G, Diener UL (1975) Toxigenic fungi in food. Appl Microbiol 30(1):159–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Lucca AJ (2007) Harmful fungi in both agriculture and medicine. Rev Iberoam Micol 24(1):3–13

    Article  PubMed  Google Scholar 

  • De Vooght L, Caljon G, Stijlemans B, De Baetselier P, Coosemans M, Van den Abbeele J (2012) Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Factories 11:23

    Article  CAS  Google Scholar 

  • Dennis DJ (1978) Observations of fungus gnat damage to glasshouse cucumber. New Zealand J Exp Agri 6:83–84

    Article  Google Scholar 

  • Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1-a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant-Microbe Interact 15(11):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • van Diepeningen AD, de Hoog GS (2016) Challenges in Fusarium, a trans-kingdom pathogen. Mycopathologia 181(3–4):161–163

    Article  PubMed  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insets: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, Cordon-Rosales C, Richards FF, Whitham RG, Beard CB (1999) Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomol 13(2):115–119

    Article  CAS  PubMed  Google Scholar 

  • Engl T, Bodenstein B, Strohm E (2016) Mycobiota in the brood cells of the european beewolf, Philanthus triangulum (hymenoptera: Crabronidae). EJE 113(1):271–277

    Google Scholar 

  • Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331(6020):1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farh ME, Kim YJ, Singh P, Yang DC (2016) Cross interaction between Ilyonectria mors-panacis isolates infecting Korean ginseng and ginseng saponins in correlation with their pathogenicity. Phytopathology 107(5):561–569

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and bio-geography of soil bacterial communities. Proc Natl Acad Sci U S A 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire L, Passamani FR, Thomas AB, Nassur RC, Silva LM, Paschoal FN, Pereira GE, Prado G, Batista LR (2017) Influence of physical and chemical characteristics of wine grapes on the incidence of Penicillium and Aspergillus fungi in grapes and ochratoxin a in wines. Int J Food Microbiol 241:181–190

    Article  CAS  PubMed  Google Scholar 

  • Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ (2011) Contribution of midgut bacteria to blood digestion and egg production in Aedesa egypti (Diptera: culicidae). Parasit Vectors 4:105

    Article  PubMed Central  Google Scholar 

  • Gardiner RB, Jarvis WR, Shipp JL (1990) Ingestion of Pythium spp. by larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 116:205–212

    Article  Google Scholar 

  • Gökçe C, Sevim A, Demirbag Z, Demir I (2010) Isolation, characterization and pathogenicity of bacteria from Rhynchites bacchus (Coleoptera: Rhynchitidae). Biocont Sci Technol 20:973–982

    Article  Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61(12):2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Grantina-Ievina L, Stanke L (2015) Incidence and severity of leaf and fruit disease of plums in Latvia. Commun Agric Appl Biol Sci 80(3):421–433

    CAS  PubMed  Google Scholar 

  • Griffiths J, Maguire J, Heggenhougen K, Quah SR (2010) Public health and infectious diseases. Elsevier, Amsterdam

    Google Scholar 

  • Hamlen R, Mead FW (1979) Fungus gnat larval control in greenhouse plant production. J Econ Entomol 72(2):269–271

    Article  Google Scholar 

  • Harris MA (1995) Not only are they nuisances, fungus gnats and shore flies can spread costly plant disease pathogens. Greenhouse Megt Prod 14:29–38

    Google Scholar 

  • Heneberg P, Řezáč M (2013) Two Trichosporon species isolated from central-European mygalomorph spiders (Araneae: Mygalomorphae). Antonie Van Leeuwenhoek 103(4):713–721

    Article  CAS  PubMed  Google Scholar 

  • Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R (2008) Identification of aerobic gut bacteria from the kalaazar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. AmJTrop Med Hyg 79(6):881–886

    Google Scholar 

  • Huang J, Xie DF, Feng Y (2017) Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun 481(1):397–402

    Article  Google Scholar 

  • Husseneder C, Grace JK (2005) Genetically engineered termite gut bacteria (Enterobactercloacae) deliver and spread foreign genes in termite colonies. Appl Microbiol Biotechnol 68:360

    Article  CAS  PubMed  Google Scholar 

  • Kalb DW, Millar RL (1986) Dispersal of Verticillium alboatrum by the fungus gnat (Bradysia impatiens). Plant Dis 70:752–753

    Article  Google Scholar 

  • Keller R, Pedroso MZ, Ritchmann R, Silva RM (1998) Occurrence of virulence associated properties in Enterobacter cloacae. Infect Immun 66(2):645–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HH, Choo HH, Lee SR, Lee HS, Cho SR, Shin HH, Park CH, Choo YM (2000) Occurrence and damage of Bradisia agrestis Sasakawa (Diptera: Sciaridae) in propagation house. Korean J Appl Entomol 39:89–97

    Google Scholar 

  • Kim JC, Choi GJ, Park JH, Kim HT, Cho KY (2001) Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag Sci 57(6):554–559

    Article  CAS  PubMed  Google Scholar 

  • Kim HH, Jeon HY, Yang CY, Kang TJ, Han YK (2009) Transmission of Fusarium oxysporum by the fungus gnat, Bradysia difformis (Diptera: Sciaridae). Res Plant Dis 15(3):262–265

    Article  Google Scholar 

  • Lambshead PJD, Platt HM, Shaw KM (2007) The detection of differences among assemblages of marine benthic species based on assessment of dominance and diversity. J Nat Hist 17:859–874

    Article  Google Scholar 

  • Lee HS, Kim TS, Shim HY, Kim HH, Kim KJ (2001) Host plant and damage symptom of fungus gnats, Bradysia spp. (Diptera: Sciaridae) in Korea. Korean J Appl Entomol 40(2):149–153

    Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    Article  CAS  PubMed  Google Scholar 

  • Liu HM, Yang PP, Cheng P, Wang HF, Liu LJ, Huang X, Zhao YQ, Wang HW, Zhang CX, Gong MQ (2015) Resistance level of mosquito species (Diptera: Culicidae) from Shandong province, china. Int J Insect Sci 19(7):47–52

    Google Scholar 

  • Liu YH, Hu XP, Li W, Cao XY, Yang HR, Lin ST, Xu CB, Liu SX, Li CF (2016) Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis li. Genet Mol Res 13:15(2)

    Google Scholar 

  • López-Coria M, Hernández-Mendoza JL, Sánchez-Nieto S (2016) Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+−ATPase. Mol Plant-Microbe Interact 29(10):797–806

    Article  PubMed  Google Scholar 

  • Lorenzini M, Zapparoli G (2015) Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration. Antonie Van Leeuwenhoek 108(5):1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Lu YH, Jin LP, Kong LC, Zhang YL (2017) Phytotoxic, antifungal and immunosuppressive metabolites from QT122 isolated from the gut of dragonfly. Curr Microbiol 74(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Ludwig SW, Oetting RD (2001) Evaluation of medium treatments for management of Frankliniella occidentalis (Thripidaea: Thysanoptera) fungus gnats, Bradysia coprophila (Diptera: Sciaridae). Pest Manag Sci 57(12):1114–1118

    Article  CAS  PubMed  Google Scholar 

  • Maddaloni M, Hoffman C, Pascual DW (2014) Paratransgenesis feasibility in the honeybee (Apis mellifera) using Fructobacillus fructosus commensal. J Appl Microbiol 117(6):1572–1584

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud MA, Al-Othman MR, Abd-El-Aziz AR, Metwaly HA, Mohamed HA (2016) Expression of genes encoding cellulolytic enzymes in some Aspergillus species. Genet Mol Res 17:5(4)

    Google Scholar 

  • Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, Aminian K, Fazeli-Varzaneh RA, Durvasula R (2015) Parasite vectors aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic zoonotic cutaneous leishmaniasis (ZCL) focus. Parasit Vectors 8:63–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Mossini SA, Arroteia CC, Kemmelmeier C (2009) Effect of neem leaf extract and neem oil on Penicillium growth, sporulation, morphology and ochratoxin a production. Toxins (Basel) 1(1):3–13

    Article  CAS  Google Scholar 

  • Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, Mohd-Azlan J, Brodie JF, Malaivijitnond S, Linkie M, Samejima H, O'Brien TG, Trainor CR, Hamada Y, Giordano AJ, Kinnaird MF, Elyazar IR, Sinka ME, Vythilingam I, Bangs MJ, Pigott DM, Weiss DJ, Golding N, Hay SI (2016) Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors 9:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV, Bhargava S (2015) Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol(Stuttg) 17(3):625–631

    CAS  Google Scholar 

  • Nam MH, Park MS, Kim HS, Kim TI, Kim HG (2015) Cladosporium cladosporioides and C. tenuissimum cause blossom blight in strawberry in Korea. Mycobiology 43(3):354–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogbebor NO, Adekunle AT, Eghafona ON, Ogboghodo AI (2015) Biological control of Rigidoporus lignosus in Hevea brasiliensis in Nigeria. Fungal Biol 119(1):1–6

    Article  PubMed  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2017) Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiol 63:191–198

    Article  CAS  PubMed  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54(4):286–290

    CAS  PubMed  Google Scholar 

  • Patiño B, Medina A, Doménech M, González-Jaén MT, Jiménez M, Vázquez C (2007) Polymerase chain reaction (PCR) identification of Penicillium brevicompactum, a grape contaminant and mycophenolic acid producer. Food Addit Contam 24(2):165–172

    Article  PubMed  Google Scholar 

  • Peterson JK, Bartsch SM, Lee BY, Dobson AP (2015) Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control. Parasit Vectors 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pétriacq P, Stassen JH, Ton J (2016) Spore density determines infection strategy by the plant pathogenic fungus Plectosphaerella cucumerina. Plant Physiol 170(4):2325–2339

    Article  PubMed  PubMed Central  Google Scholar 

  • Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus Mosquito midgut based on 16s ribosomal RNA gene analysis. AmJTrop Med Hyg 70:597–603

    CAS  Google Scholar 

  • Radhakrishnan R, Khan AL, Lee IJ (2013) Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol 51(6):850–857

    Article  CAS  PubMed  Google Scholar 

  • Rasgon JL (2011) Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes. Future Microbiol 6(8):851–853

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakkas H, Economou V, Papadopoulou C (2016) Zika virus infection: past and present of another emerging vector-borne disease. J Vector Borne Dis 53(4):305–311

    PubMed  Google Scholar 

  • Saritha M, Singh S, Tiwari R, Goel R, Nain L (2016) Do cultural conditions induce differential protein expression: profiling of extracellular proteome of Aspergillus terreus CM20. Microbiol Res 192:73–83

    Article  CAS  Google Scholar 

  • Segato F, Dias B, Berto GL, de Oliveira DM, De Souza FH, Citadini AP, Murakami MT, Damásio AR, Squina FM, Polikarpov I (2017) Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624. Biochim Biophys Acta 1865(4):395–403

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Inokuchi T, Kusano M, Takeuchi S, Inoue R, Tanita M, Fujioka S, Kimura Y (2004) 4-Hydroxykigelin and 6-demethylkigelin, root growth promoters, produced by Aspergillus terreus. Z Naturforsch C 59(3–4):218–222

    CAS  PubMed  Google Scholar 

  • Shin WS, Park B, Lee D, Oh MK, Chun GT, Kim S (2017) Enhanced production of itaconic acid through development of transformed fungal strains of Aspergillus terreus. J Microbiol Biotechnol 28(27):306–315

    Article  Google Scholar 

  • Staal GB (1986) Anti juvenile hormone agents. Annu Rev Entomol 31:391–429

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock GW (1995) Normal microflora: an introduction to microbes inhabiting the human body. Kluwer Academic Publishers, Alphen aan den Rijn

    Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5:377–383

    Article  CAS  PubMed  Google Scholar 

  • Torres DE, Rojas-Martínez RI, Zavaleta-Mejía E, Guevara-Fefer P, Márquez-Guzmán GJ, Pérez-Martínez C (2017) Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS One 12(1):e0170782

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinetta V, Linton RH, Morgan MT (2013) Use of chlorine dioxide gas for the postharvest control of Alternaria alternata and Stemphylium vesicarium on Roma tomatoes. J Sci Food Agric 93(13):3330–3

  • Valiente Moro C, Tran FH, Raharimalala FN, Ravelonandro P, Mavingui P (2013) Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega FE, Posada F, Peterson SW, Gianfagna TJ, Chaves F (2006) Penicillium species endophytic in coffee plants and ochratoxin a production. Mycologia 98(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Walker C, Muniz MF, Rolim JM, Martins RR, Rosenthal VC, Maciel CG, Mezzomo R, Reiniger LR (2016) Morphological and molecular characterization of Cladosporium cladosporioides species complex causing pecan tree leaf spot. Genet Mol Res 16:15(3)

    Google Scholar 

  • Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S (2016) Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: an insight into the microbiome of Crocus sativus Linn. Fungal Biol 120(12):1509–1524

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. San Diego: Academic Press

  • Whittaker RH (1972) Evolution of species diversity in land communities. Evol Biol 10:1–67

    Google Scholar 

  • Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GB, Veer V (2015) Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit Vectors 8(1):641

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Ioka D, Matsuoka H, Endo H, Ishii A (2001) Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 113(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • You YH, Park JM, Park JH, Kim JG (2016) Endophyte distribution and comparative analysis of diversity in wetlands showing contrasting geomorphic conditions. Symbiosis 69:21–36

    Article  Google Scholar 

  • You YH, Park JM, Yi PH, Back CG, Park MJ, Han KS, Yoon JB, Kim HH, Park JH (2017) Microflora of phytopathogen-transferring Bradysia agrestis: a step toward finding ideal candidates for paratransgenesis. Symbiosis 71(1):35–46

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ0112182017)” of the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sa-Youl Ghim or Jong-Han Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.M., You, YH., Back, CG. et al. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis 74, 145–158 (2018). https://doi.org/10.1007/s13199-017-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0494-3

Keywords

Navigation