, Volume 73, Issue 1, pp 45–56 | Cite as

Potato field-inoculation in Ecuador with Rhizophagus irregularis: no impact on growth performance and associated arbuscular mycorrhizal fungal communities

  • Paul Loján
  • Carolina Senés-Guerrero
  • Juan Pablo Suárez
  • Peter Kromann
  • Arthur Schüßler
  • Stéphane Declerck


A field trial was conducted in two localities of the Ecuadorian Andes to evaluate potato (Solanum tuberosum c.v. INIAP - Fripapa) response to inoculation with four commercial products containing the arbuscular mycorrhizal fungus (AMF) strain Rhizophagus irregularis DAOM 197198. In parallel, potato roots were analysed using 454 GS-FLX+ sequencing of c. 800 bp of the nuclear LSU rRNA gene to assess the associated AMF communities. To evaluate inoculation success, sequence reads of R. irregularis on the root samples were compared between inoculated and not inoculated plants by analysing the frequency of occurrence (FO) and relative read abundance (RA). None of the commercial products significantly increased potato yield. Instead, the AMF communities were dominated by an unknown Acaulospora sp. (Sp14) found at high FO and RA in both localities. Rhizophagus irregularis was found in most of the roots of both inoculated and not inoculated plants at both localities. However, its abundance was unexpectedly low indicating poor inoculum establishment. Clearly, many factors have to be taken in consideration for the successful application of AMF-based inoculants. For the Ecuadorian field trials, several causes may explain the lack or poor establishment of R. irregularis such as inoculation technique, agricultural practices, biotic and abiotic conditions and competition with native AMF species.


Arbuscular mycorrhizal fungi Commercial inoculum LSU rRNA gene Rhizophagus irregularis Solanum tuberosum 



This work was supported by the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement N° 227522, entitled “Valorizing Andean microbial diversity through sustainable intensification of potato-based farming systems”. Paul Loján was funded by SENESCYT (Secretaría Nacional de Educación Ciencia y Tecnología del Ecuador).

Supplementary material

13199_2016_471_MOESM1_ESM.pdf (61 kb)
Online Resource 1 (PDF 61 kb)
13199_2016_471_MOESM2_ESM.pdf (61 kb)
Online Resource 2 (PDF 61 kb)
13199_2016_471_MOESM3_ESM.pdf (61 kb)
Online Resource 3 (PDF 61 kb)
13199_2016_471_MOESM4_ESM.pdf (268 kb)
Online Resource 4 (PDF 268 kb)


  1. APHA (1996) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.CGoogle Scholar
  2. Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075CrossRefPubMedGoogle Scholar
  3. Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. In: Grillo O (ed) Biodiversity: the dynamic balance of the planet. InTech, Rijeta, pp. 159–191Google Scholar
  5. Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922CrossRefGoogle Scholar
  6. Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465CrossRefPubMedGoogle Scholar
  7. Börstler B, Thiery O, Sýkorová Z, Berner A, Redecker D (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511CrossRefPubMedGoogle Scholar
  8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carreón-Abud Y, Vega-Fraga M, Gavito ME (2015) Interaction of arbuscular mycorrhizal inoculants and chicken manure in avocado rootstock production. J Soil Sci Plant Nutr 15:867–881Google Scholar
  10. Cesaro P, van Tuinen D, Copetta A, Chatagnier O, Berta G, Gianinazzi S, Lingua G (2008) Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl Environ Microbiol 74:5776–5783CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng Y, Bai D, Sun L, Feldmann F, Feng G, Kapulnik Y, and Baar J (2008) Utilization of arbuscular mycorrhizal fungi during production of micropropagated potato Solanum tuberosum. In Mycorrhiza works: Proceedings of the International Symposium" Mycorrhiza for Plant Vitality" and the Joint Meeting for Working Groups 1–4 of COST Action 870, Hannover, Germany, 3–5 October, 2007, pp. 165–178.Google Scholar
  12. Cuenca G, Cáceres A, González MG (2008) AM inoculation in tropical agriculture: field results. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, Berlin Heidelberg, pp. 403–417CrossRefGoogle Scholar
  13. Davies FT, Calderón CM, Huaman Z (2005) Influence of arbuscular Mycorrhizae indigenous to Peru and a flavonoid on growth, yield, and leaf elemental concentration of Yungay potatoes. Hortic Sci 40:381–385Google Scholar
  14. Dercon G, Govers G, Poesen J, Sánchez H, Rombaut K, Vandenbroeck E et al (2007) Animal-powered tillage erosion assessment in the southern Andes region of Ecuador. Geomorphology 87:4–15CrossRefGoogle Scholar
  15. Douds DD Jr, Nagahashi G, Reider C, Hepperly PR (2007) Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol Agric Hortic 25:67–78CrossRefGoogle Scholar
  16. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  17. Fall F, Diouf DE, Fall D, Ndoye I, Ndlaye C, Kane A, Ba AM (2015) Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions. Afr J Biotechnol 14:2770–2776CrossRefGoogle Scholar
  18. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609CrossRefGoogle Scholar
  19. Formey D, Moles M, Haouy A, Savelli B, Bouchez O, Becard G, Roux C (2012) Comparative analysis of mitochondrial genomes of Rhizophagus Irregularis–syn. Glomus irregulare–reveals a polymorphism induced by variability generating elements. New Phytol 196:1217–1227CrossRefPubMedGoogle Scholar
  20. Fox RL, Olson RA, Rhoades HF (1964) Evaluating the sulfur status of soils by plant and soil tests. Soil Sci Soc of Am. PRO 28:243–246Google Scholar
  21. Hawkes JG (1990) The potato. Evolution, biodiversity and genetic resources. Smithsonian Institution Press, WashingtonGoogle Scholar
  22. Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2011) Soil–strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21:183–193CrossRefPubMedGoogle Scholar
  23. Hijri M (2015) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214CrossRefPubMedGoogle Scholar
  24. Hunter AH (1979) Suggested soil plant analytical techniques for tropical soils research program laboratories. Agroservices International, Orange CityGoogle Scholar
  25. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16CrossRefPubMedGoogle Scholar
  26. Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135CrossRefPubMedGoogle Scholar
  27. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303CrossRefGoogle Scholar
  28. Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slvíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493CrossRefGoogle Scholar
  29. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223CrossRefPubMedGoogle Scholar
  30. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984CrossRefPubMedGoogle Scholar
  31. Lu FC, Lee CY, and Wang CL (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J. doi: 10.7717/peerj.1266
  32. Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A (2008) Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 45:812–817CrossRefPubMedGoogle Scholar
  33. Mummey DL, Rillig MC (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol 64:260–270CrossRefPubMedGoogle Scholar
  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, et al. (2013) Vegan: Community Ecology Package. R package version 2.15–1.2013. Accessed 10 May 2013
  35. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov. Print. Office, WashingtonGoogle Scholar
  36. Pellegrini F (2013) Evaluation of Integrated Pest Management (IPM) adoption in potato production using the Sustainable Livelihoods Approach. Dissertation, Swedish University of Agricultural SciencesGoogle Scholar
  37. Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822CrossRefPubMedGoogle Scholar
  38. Peyret-Guzzon M, Stockinger H, Bouffaud ML, Farcy P, Wipf D, Redecker D (2016) Arbuscular mycorrhizal fungal communities and Rhizophagus Irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. Mycorrhiza 26:33–46CrossRefPubMedGoogle Scholar
  39. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0.
  40. Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME journal 9:1053–1061CrossRefPubMedGoogle Scholar
  41. Sasvári Z, Hornok L, Posta K (2011) The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biol Fertil Soils 47:167–176CrossRefGoogle Scholar
  42. Schlaeppi K, Bender SF, Mascher F, Russo G, Patrignani A, Camenzind T et al (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol. doi: 10.1111/nph.14070 PubMedGoogle Scholar
  43. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeroomycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  44. Schüßler A, Krüger C, Urgiles N (2016) Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 26:199–207CrossRefPubMedGoogle Scholar
  45. Senés-Guerrero C, Schüßler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333CrossRefGoogle Scholar
  46. Senés-Guerrero C, Torres-Cortés G, Pfeiffer S, Rojas M, Schüßler A (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24:405–417. doi: 10.1007/s00572-013-0549-0 CrossRefPubMedGoogle Scholar
  47. Sherwood S, Crissman C, and Cole D (2002) Pesticide exposure and poisonings in Ecuador: a call for action. Pesticides News-London-Pesticides Trust then Pesticide Action Network UK, 3–6Google Scholar
  48. SINAGAP (2014) Sistema Nacional de Información del Ministerio de Agricultura, Ganadería, Acuacultura y Pesca del Ecuador. Boletín Situacional Papa. Accessed 10 Oct 2016
  49. Smith EE, Read JD (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  50. Stockinger H, Walker C, Schüßler A (2009) Glomus intraradices DAOM 197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187CrossRefPubMedGoogle Scholar
  51. Struik PC (2007) Above-ground and below-ground plant development. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives, 1st edn. Elsevier, UK, pp. 219–236CrossRefGoogle Scholar
  52. Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14CrossRefPubMedGoogle Scholar
  53. Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80CrossRefPubMedGoogle Scholar
  54. Tambascio C, Covacevich F, Lobato MC, de Lasa C, Caldiz D, Dosio G, Andreu A (2014) The application of K phosphites to seed tubers enhanced emergence, early growth and mycorrhizal colonization in potato (Solanum tuberosum). AJPS 5:132–137CrossRefGoogle Scholar
  55. Tawaraya K, Hirose R, Wagatsuma T (2012) Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biol Fert. Soil 48:839–843Google Scholar
  56. Thiéry O (2010) Molecular markers from the mitochondrial genome of arbuscular mycorrhizal fungi (Glomeromycota): evolutionary dynamics and application. Dissertation, University of BaselGoogle Scholar
  57. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, pp 217–221Google Scholar
  58. Urgiles N, Loján P, Aguirre N, Blaschke H, Günter S, Stimm B, Kottke I (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forest 38:229–239CrossRefGoogle Scholar
  59. Vályi K, Rillig MC, Hempel S (2015) Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol 205:1577–1586CrossRefPubMedGoogle Scholar
  60. Velivelli SLS, Kromann P, Loján P, Rojas M, Franco J, Suarez JP, Prestwich BD (2015) Identification of mVOCs from Andean Rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its Center of Origin. Microb Ecol 69:652–667CrossRefPubMedGoogle Scholar
  61. Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109CrossRefPubMedGoogle Scholar
  62. Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37CrossRefGoogle Scholar
  63. Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68CrossRefPubMedGoogle Scholar
  64. Wehner J, Antunes PM, Powell JR, Caruso T, Rillig MC (2011) Indigenous arbuscular mycorrhizal fungal assemblages protect grassland host plants from pathogens. PLoS One 6(11):e27381CrossRefPubMedPubMedCentralGoogle Scholar
  65. White PJ, Wheatley RE, Hammond JP, Zhang K (2007) Minerals, soils and roots. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives, 1st edn. Elsevier, UK, pp. 739–752CrossRefGoogle Scholar
  66. White JA, Tallaksen J, Charvat I (2008) The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site. Mycologia 100:6–11CrossRefPubMedGoogle Scholar
  67. Wolfe BE, Mummey DL, Rillig MC, Klironomos JN (2007) Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Paul Loján
    • 1
    • 2
  • Carolina Senés-Guerrero
    • 3
    • 4
  • Juan Pablo Suárez
    • 2
  • Peter Kromann
    • 5
  • Arthur Schüßler
    • 3
  • Stéphane Declerck
    • 1
  1. 1.Earth and Life Institute, Applied Microbiology, MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Departamento de Ciencias NaturalesUniversidad Técnica Particular de LojaLojaEcuador
  3. 3.Genetics, Department of BiologyLudwig-Maximilians University MunichPlanegg-MartinsriedGermany
  4. 4.Tecnologico de MonterreyMonterreyMexico
  5. 5.International Potato Center (CIP)QuitoEcuador

Personalised recommendations