Skip to main content

Ultraviolet radiation reduces lichen growth rates

Abstract

We quantified relative growth rates (RGR) in shade-adapted and melanin-deficient thalli of Cetraria islandica and Lobaria pulmonaria cultivated in short-term growth chamber experiments with and without UV-B radiation. In the first experiment done under optimal PAR (125 μmol m−2 s−1), but high UV-B radiation (1 W m−2), UV-B radiation significantly reduced RGR (P < 0.001). The second experiment with higher PAR, but more natural ratios between wavelength ranges (PAR: 500 μmol m−2 s−1; UV-A: 7 W m−2; UV-B: 0.4 W m−2), caused a reduction in mean RGR in L. pulmonaria to just 45% of rates in experiment 1. Lobaria pulmonaria screened from UV-B radiation had 1.9 and 1.6 times higher RGR than non-screened thalli in experiment 1 and 2, respectively. UV-B radiation significantly induced melanin synthesis in the second experiment only, causing significantly less photoinhibition than in thalli receiving just PAR. This is consistent with PAR-protective roles of melanins. Chlorophylls were not affected by UV-B radiation in any experiment. Because UV-B radiation affected RGR more than pure photobiont responses, the mycobiont is likely the more UV-B-susceptible partner. Apart from reduced RGR, we found little evidence for adverse UV-B effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alam MA, Gauslaa Y, Solhaug KA (2015) Soluble carbohydrates and relative growth rates in chloro-, cyano- and cephalolichens: effects of temperature and nocturnal hydration. New Phytol 208(3):750–762. doi:10.1111/nph.13484

    CAS  Article  PubMed  Google Scholar 

  2. Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) (2012) Beyond the visible:a handbook of best practice in plant UV photobiology. COST Action FA0906 UV4growth. University of Helsinki, Division of Plant Biology, Helsinki

  3. Armstrong RA, Bradwell T (2011) Growth of foliose lichens: a review. Symbiosis 53(1):1–16

    Article  Google Scholar 

  4. Bidussi M, Gauslaa Y, Solhaug KA (2013a) Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237:1359–1366

    CAS  Article  PubMed  Google Scholar 

  5. Bidussi M, Goward T, Gauslaa Y (2013b) Growth and secondary compounds investments in the epiphytic lichens Lobaria pulmonaria and Hypogymnia occidentalis transplanted along an altitudinal gradient in British Columbia. Botany 91:621–630

    CAS  Article  Google Scholar 

  6. Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1(9):678–685

    CAS  Article  PubMed  Google Scholar 

  7. Bjerke JW, Gwynn-Jones D, Callaghan TV (2005) Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic–alpine lichens. Environ Exp Bot 53(2):139–149

    CAS  Article  Google Scholar 

  8. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549. doi:10.1111/j.1751-1097.2007.00226.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Buffoni-Hall RS, Bornman JF, Björn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. JPhotochemPhotobiol, B 66(1):13–20

  10. Buffoni Hall RS, Paulsson M, Duncan K, Tobin AK, Widell S, Bornman JF (2003) Water-and temperature-dependence of DNA damage and repair in the fruticose lichen Cladonia arbuscula ssp. mitis exposed to UV-B radiation. Physiol Plant 118(3):371–379

  11. Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    CAS  Article  Google Scholar 

  12. Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B Biol 46(1):40–52

    CAS  Article  Google Scholar 

  13. Eaton S, Ellis CJ (2014) High demographic rates of the model epiphyte Lobaria pulmonaria in an oceanic Hazelwood (western Scotland). Fungal Ecol 11:60–70. doi:10.1016/j.funeco.2014.03.007

    Article  Google Scholar 

  14. Gauslaa Y (2006) Trade-off between reproduction and growth in the foliose old forest lichen Lobaria pulmonaria. Basic and Applied Ecology 7:455–460

    Article  Google Scholar 

  15. Gauslaa Y, Goward T (2012) Relative growth rates of two epiphytic lichens, Lobaria pulmonaria and Hypogymnia occidentalis, transplanted within and outside of Populus dripzones. Botany 90:954–965

    CAS  Article  Google Scholar 

  16. Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic and Applied Ecology 6:75–82

    CAS  Article  Google Scholar 

  17. Gauslaa Y, Solhaug KA (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354

    Article  Google Scholar 

  18. Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria - interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705

    CAS  Google Scholar 

  19. Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  PubMed  Google Scholar 

  20. Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147:406–416

    Article  PubMed  Google Scholar 

  21. Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3(4):326–337. doi:10.1016/j.funeco.2010.01.003

    Article  Google Scholar 

  22. Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115. doi:10.1016/j.tplants.2012.09.003

    CAS  Article  PubMed  Google Scholar 

  23. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    CAS  Article  PubMed  Google Scholar 

  24. Larsson P, Večeřová K, Cempírková H, Solhaug KA, Gauslaa Y (2009) Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environ Exp Bot 67(1):215–221

    CAS  Article  Google Scholar 

  25. Leppik E, Jüriado I, Suija A, Liira J (2015) Functional ecology of rare and common epigeic lichens in alvar grasslands. Fungal Ecol 13:66–76. doi:10.1016/j.funeco.2014.08.003

    Article  Google Scholar 

  26. Li F-R, Peng S-L, Chen B-M, Hou Y-P (2010) A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecol-Int J Ecol 36(1):1–9. doi:10.1016/j.actao.2009.09.002

    Article  Google Scholar 

  27. Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem Soc Trans 603:591–593

  28. Lutsak T, Fernández-Mendoza F, Kirika P, Wondafrash M, Printzen C (2016) Mycobiont-photobiont interactions of the lichen Cetraria aculeata in high alpine regions of East Africa and South America. Symbiosis 68(1–3):25–37. doi:10.1007/s13199-015-0351-1

  29. Matee LP, Beckett RP, Solhaug KA, Minibayeva FV (2016) Characterization and role of tyrosinases in the lichen Lobaria pulmonaria (L.) Hoffm. Lichenologist 48(4):311–322. doi:10.1017/s0024282916000293

    Article  Google Scholar 

  30. McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycol Prog 5:221–229

    Article  Google Scholar 

  31. McEvoy M, Solhaug KA, Gauslaa Y (2007) Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150

    Google Scholar 

  32. Meeßen J, Sánchez F, Sadowsky A, de la Torre R, Ott S, de Vera J-P (2013) Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Orig Life Evol Biosph 43(6):501–526

    Article  PubMed  Google Scholar 

  33. Merinero S, Martínez I, Rubio-Salcedo M, Gauslaa Y (2015) Proximity to the ground boosts epiphytic lichen growth in Mediterranean forests. Basic Appl Ecol 55:59–64

    Google Scholar 

  34. Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485

    Article  Google Scholar 

  35. Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Article  PubMed  Google Scholar 

  36. Palmqvist K, Sundberg B (2002) Characterising photosynthesis and respiration in freshly isolated or cultured lichen photobionts. In: Protocols in Lichenology. Springer, pp 152–181

  37. Riley P (1997) Melanin. Int J Biochem Cell Biol 29(11):1235–1239

    CAS  Article  PubMed  Google Scholar 

  38. Robson TM, Klem K, Urban O, Jansen MAK (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38(5):856–866. doi:10.1111/pce.12374

    CAS  Article  PubMed  Google Scholar 

  39. Routaboul C, Denis A, Vinche A (1999) Immediate pigment darkening: description, kinetic and biological function. Eur J Dermatol 9(2):95–99

    CAS  PubMed  Google Scholar 

  40. Rozema J, Björn LO, Bornman JF, Gaberscik A, Häder DP, Trost T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B 66(1):2–12

    CAS  Article  PubMed  Google Scholar 

  41. Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10

    Article  PubMed  Google Scholar 

  42. Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108(3):412–418

    Article  PubMed  Google Scholar 

  43. Solhaug KA, Gauslaa Y (2004) Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ 27:167–176

    CAS  Article  Google Scholar 

  44. Solhaug KA, Gauslaa Y (2012) Secondary lichen compounds as protection against excess solar radiation and herbivores. In: Progress in Botany 73. Springer, pp 283–304

  45. Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    CAS  Article  Google Scholar 

  46. Solhaug KA, Larsson P, Gauslaa Y (2010) Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. Planta 231:1003–1011

    CAS  Article  PubMed  Google Scholar 

  47. Sonesson M, Callaghan T, Björn LO (1995) Short-term effects of enhanced UV-B and CO 2 on lichens at different latitudes. Lichenologist 27(06):547–557

    Google Scholar 

  48. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Research Council of Norway, South Africa – Norway, Research co-operation (SANCOOP), project 234178, is thanked for financial support. We also thank two anonymous reviewers for useful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yngvar Gauslaa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, D.P., Solhaug, K.A. & Gauslaa, Y. Ultraviolet radiation reduces lichen growth rates. Symbiosis 73, 27–34 (2017). https://doi.org/10.1007/s13199-016-0468-x

Download citation

Keywords

  • Cetraria islandica
  • Light screening
  • Lobaria pulmonaria
  • Melanin
  • Relative growth rate
  • UV-B