, Volume 71, Issue 1, pp 9–17 | Cite as

Hypogeous sequestrate fungi in South America – how well do we know them?

  • Marcelo Aloisio SulzbacherEmail author
  • Tine Grebenc
  • Admir José Giachini
  • Iuri Goulart Baseia
  • Eduardo R. Nouhra


Collecting and studying hypogeous sequestrate fungi and their particular fruiting biology has always been challenging and intriguing for scientists. However, knowledge of hypogeous taxa has for a long time been limited mainly to the Northern Hemisphere, and more recently, Australia. Nevertheless, cumulative information on sequestrate fungi for South America (SA) has increased considerably over the years, and constitutes by itself, the aim of this review. We have reviewed the available published literature, from 1880 until recent times, to extract information on records, ecology, and morphological characteristics of hypogeous sequestrate fungi from SA. Based on the 172 taxa cited in the available literature, a trend of increasing interest in the study of these fungi in the region is apparent, yet with an uneven distribution among countries, climate belts, and nature of forest habitats. Hypogeous truffle-like species in SA play a key role in regulating nutrient and carbon cycles and in all ecosystem multifunctionality. The symbiotic status is provided for most species listed, and mutualism, especially ectomycorrhizal, is predominant (82 %). The hypogeous sequestrate fungi in SA are an understudied group of fungi, with exceptional anatomical and biological features as well as in many cases intriguing phylogenetic relationships, requiring more attention and analysis from mycologists.


Ascomycota Basidiomycota Ectomycorrhizal truffle-like species Sequestrate fruit-bodies 



The authors thank Dr. James Trappe (Corvallis, Oregon USA) for suggestions and comments and to Jean McCollister for improving the English of the manuscript. This study is a partial result of the Ph.D. thesis of the first author, with a scholarship provided by the Brazilian Government (CAPES scholar, proceeding 99999.004997/2014- 00). E.N. thanks to CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for financial support. TG was co-financed by the bilateral cooperation project Slovenia - Brazil No. 490648/2010-0 (CNP) (Brazil)/BI-BR/11-13-005 (Slovenia) and the Research Program in Forest Biology, Ecology and Technology (P4-0107) of the Slovenian Research Agency. Dr. Lorenzo Pecoraro and an anonymous reviewer improved this work with constructive editorial critiques.

Supplementary material

13199_2016_461_MOESM1_ESM.docx (107 kb)
ESM 1 (DOCX 106 kb)


  1. Bâ AM, Duponnois R, Moyersoen B, Diédhiou AG (2012) Ectomycorrhizal symbiosis of tropical African trees. Mycorrhiza 22:1–29. doi: 10.1007/s00572-011-0415-x
  2. Becerra AG (2002) Influencia de los suelos ustorthentes sobre las ectomicorrizas y endomicorrizas de Alnus acuminata H.B.K. Facultad de Agronomía, Universidad de Buenos Aires – unpublished Master’s dissertationGoogle Scholar
  3. Bougher NL, Lebel T (2001) Sequestrate (truffle-like) fungi of Australia and New Zealand. Aust Syst Bot 14:439–484CrossRefGoogle Scholar
  4. Brunner I, Horak E (1990) Mycoecological analysis of Alnus associated macrofungi in the region of the Swiss National Park as recorded by J. Favre (1960). Mycol Helv 4:111–139Google Scholar
  5. Calonge FD, Martín MP (2000) Morphological and molecular data on the taxonomy of Gymnomyces, Martellia and Zelleromyces (Elasmomycetaceae, Russulales). Mycotaxon 76:9–15Google Scholar
  6. Castellano MA, Trappe JM (1990) Australasian truffle-like fungi. I. Nomenclatural bibliography of type descriptions of basidiomycotina. Aust Syst Bot 3:653–670CrossRefGoogle Scholar
  7. Castellano MA, Verbeken A, Walleyn R, Thoen D (2000) Some new or interesting sequestrate Basidiomycota from African woodlands. Kartsenia 40:11–21Google Scholar
  8. Castellano MA, Trappe JM, Luoma DL (2004) Sequestrate fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, Boston, pp 197–213CrossRefGoogle Scholar
  9. Castellano MA, Henkel TW, Miller SL, Smith ME, Aime MC (2012) Two new Elaphomyces species (Elaphomycetaceae, Eurotiales, Ascomycota) from Guyana. Mycologia 104:1244–1249. doi: 10.3852/12-061
  10. Castellano MA, Dentinger BTM, Séné O, Elliott TF, Truong C, Henkel TW (2016) New species of Elaphomyces (Elaphomycetaceae, Eurotiales, Ascomycota)from tropical rainforests of Cameroon and Guyana. IMA Fungus 7:59–73. doi: 10.5598/imafungus.2016.07.01.05
  11. Cázares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86:507–510CrossRefGoogle Scholar
  12. Chen J, Guo S-X, Liu P-G (2011) Species recognition and cryptic species in the Tuber indicum complex. PLoS One 6:e14625CrossRefPubMedPubMedCentralGoogle Scholar
  13. Claridge AW, Lindenmayer DB (1998) Consumption of hypogeous fungi by the mountain brushtail possum (Trichosurus caninus) in eastern Australia. Mycol Res 102:269–272CrossRefGoogle Scholar
  14. Claridge AW, Trappe JM (2005) Sporocarp mycophagy: nutritional, behavioral, evolutionary, and physiological aspects. In: Dighton J, White JF, Oudemans P (eds) The fungal community, its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 599–611CrossRefGoogle Scholar
  15. Claridge AW, Cork SJ, Trappe JM (2000) Diversity and habitat relationships of hypogeous fungi. I. Study design, sampling techniques and general survey results. Biodivers Conserv 9:151–173CrossRefGoogle Scholar
  16. Clemençon H (1977) Über Melanogaster microsporus und Alpova diplophloeus. Z Pilzk 55:155–156Google Scholar
  17. Colgan W III, Carey AB, Trappe JM, Molina R, Thysell D (1999) Diversity and productivity of hypogeous fungal sporocarps in a variably thinned Douglas-fir forest. Can J For Res 29:1259–1268CrossRefGoogle Scholar
  18. Corner EJH, Hawker LE (1953) Hypogeous fungi from Malaya. Trans Br Mycol Soc 36:125–137CrossRefGoogle Scholar
  19. Danks M, Lebel T, Vernes K (2010) ‘Cort short on a mountaintop’ – eight new species of sequestrate Cortinarius from sub-alpine Australia and affiliations to sections within the genus. Persoonia 24:106–126. doi: 10.3767/003158510X512711
  20. Danks M, Lebel T, Vernes K, Andrew N (2013) Truffle-like fungi sporocarps in a eucalypt-dominated landscape: patterns in diversity and community structure. Fungal Divers 58:143–157. doi: 10.1007/s13225-012-0193-6
  21. Desjardin DE (2003) A unique ballistosporic hypogeous sequestrate Lactarius from California. Mycologia 95:148–155. doi: 10.2307/3761974 CrossRefPubMedGoogle Scholar
  22. Dring DM, Pegler DN (1978) New and noteworthy gasteroid relatives of the Agaricales from Tropical Africa. Kew Bull 32:563–569CrossRefGoogle Scholar
  23. Ducousso M, Duponnois R, Thoen D, Prin Y (2012) Diversity of Ectomycorrhizal fungi associated with Eucalyptus in Africa and Madagascar. Int J For Res 10:1–10. doi: 10.1155/2012/450715 Google Scholar
  24. Eberhardt U, Verbeken A (2004) Sequestrate Lactarius species from tropical Africa: L. angiocarpus sp. nov. and L. dolichocaulis comb. nov. Mycol Res 108:1042–1052CrossRefPubMedGoogle Scholar
  25. Fogel RD, Trappe JM (1978) Fungus consumption (mycophagy) by small mammals. Northwest Sci 52:1–31Google Scholar
  26. Ge Z-W, Smith ME (2013) Phylogenetic analysis of rDNA sequences indicates that the sequestrate Amogaster viridiglebus is derived from within the agaricoid genus Lepiota (Agaricaceae). Mycol Prog 12:151–155. doi: 10.1007/s11557-012-0841-y
  27. Halling RE (1981) Thaxter’s Thaxterogasters and other Chilean hypogeous fungi. Mycologia 73:853–868CrossRefGoogle Scholar
  28. Henkel TW, Smith ME, Aime CM (2010) Guyanagaster, a new wood-decaying sequestrate fungal genus related to Armillaria Agaricales, Basidiomycota. Am J Bot 97:1–11. doi: 10.3732/ajb.1000097 CrossRefGoogle Scholar
  29. Henkel TW, Aime MC, Chin MML, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominat forests of the Guiana Shield. Biodivers Conserv 21:2195–2220. doi: 10.1007/s10531-011-0166-1 CrossRefGoogle Scholar
  30. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, LichtwardtR LJ, Miądlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, RouxC RL, Sampaio JP, Schußler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547. doi: 10.1016/j.mycres.2007.03.004 CrossRefPubMedGoogle Scholar
  31. Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816–822CrossRefPubMedGoogle Scholar
  32. Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11:815–830CrossRefGoogle Scholar
  33. Horak E, Moser M (1965) Fungi austroamericani. XII. Studien zur Gattung Thaxterogaster Singer. Nova Hedwigia 10:211–241Google Scholar
  34. Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan WIII, Domínguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR, Simpson NB, Spatafora JW, Trappe JM (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959. doi: 10.3852/mycologia.98.6.949
  35. Huang J-Y, Hu H-T, Shen W-C (2009) Phylogenetic study of two truffles, Tuber formosanum and Tuber furfuraceum, identified from Taiwan. FEMS Microbiol Lett 294:157–171CrossRefPubMedGoogle Scholar
  36. Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65:438–445CrossRefGoogle Scholar
  37. Kendrick B (1992) The fifth kingdom. Focus, Newburyport, Massachusetts, USAGoogle Scholar
  38. Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, UKGoogle Scholar
  39. Lebel T, Tonkin JE (2007) Australasian species of Macowanites are sequestrate species of Russula (Russulaceae, Basidiomycota). Aust Syst Bot 20:355–381. doi: 10.1071/SB07007 CrossRefGoogle Scholar
  40. Lebel T, Orihara T, Maekawa N (2012) The sequestrate genus Rossbeevera T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations. Fungal Divers 52:49–71. doi: 10.1007/s13225-011-0118-9 CrossRefGoogle Scholar
  41. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. doi: 10.1111/j.1469-8137.2006.01936.x
  42. Lumyong S, Sanmee R, Lumyong P, Yang ZL, Trappe JM (2003) Mycoamaranthus cambodgensis comb. nov., a widely distributed sequestrate basidiomycete from Australia and southeastern Asia. Mycol Prog 2:323–325. doi: 10.1007/s11557-006-0069-9
  43. Luoma DL, Frenkel RE, Trappe JM (1991) Fruiting of hypogeous fungi in Oregon Douglas-fir forests: seasonal and habitat variation. Mycologia 83:335–353CrossRefGoogle Scholar
  44. Maser C, Claridge AW, Trappe JM (2010) Trees, Truffles, and Beasts. 3rd edn, Rutgers Univ., PressGoogle Scholar
  45. Miller SL, McClean TM, Walker JF, Buyck B (2001) A molecular phylogeny of the Russulaceae including agaricoid, gasteroid and pleurotoid taxa. Mycologia 93:344–354. doi: 10.2307/3761656 CrossRefGoogle Scholar
  46. Molina R (1979) Pure culture synthesis and host specificity of red alder mycorrhizae. Can J Bot 59:1223–1228CrossRefGoogle Scholar
  47. Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334CrossRefGoogle Scholar
  48. Montecchi A, Sarasini M (2000) Fungi ipogei d’Europa. A.M.B. Fondazione Centro Studi Micologici, Vicenza, ItalyGoogle Scholar
  49. Moreno-Arroyo B, Gómez J, Pulido E (2005) Tesoros de nuestros montes. Trufas de Andalucía. Córdoba (Spain): Consejería de Medio Ambiente, Junta de AndalucíaGoogle Scholar
  50. Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762. doi: 10.1111/j.1469-8137.2006.01860.x
  51. Moyersoen B (2012) Dispersion, an important radiation mechanism for ectomycorrhizal fungi in Neotropical lowland forests? Padmini Sudarshana MN-RaJRS, editor: InTech. DOI:  10.5772/33217. Available: Accessed 2015 Sep 18
  52. Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, Halling RE, Hjortstam K, Iturriaga T, Larsson K-H, Lodge DJ, May TW, Minter D, Rajchenberg M, Redhead SA, Ryvarden L, Trappe JM, Watling R, Wu Q (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48. doi: 10.1007/s10531-006-9108-8 CrossRefGoogle Scholar
  53. Mujic AB, Hosaka K, Spatafora JW (2014) Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia 106:105–112. doi: 10.3852/13-055
  54. Nixon KC (2006) Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In: Kappelle M (ed) Ecology and conservation of neotropical montane Oak forest, ecological studies, vol 185. Springer, Berlin HeidelbergGoogle Scholar
  55. Nouhra E, Dominguez L, Becerra A, Mangeaud A (2003) Colonización micorricica y actinorricica en plantines de Alnus acuminata (Betulaceae) cultivados en suelos nativos de Alnus rubra. Bol Soc Argent Bot 38(3–4):199–206Google Scholar
  56. Nouhra ER, Domínguez LS, Becerra AC, Trappe JM (2005) Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov. Mycologia 97:598–604. doi: 10.3852/mycologia.97.3.598 CrossRefPubMedGoogle Scholar
  57. Nouhra ER, Urcelay C, Longo MS, Fontenla S (2012a) Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina. Mycologia 104:45–52. doi: 10.3852/11-098 CrossRefPubMedGoogle Scholar
  58. Nouhra ER, Hernandez ML, Pastor N, Crespo E (2012b) The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia 2012:488–495. doi: 10.3852/11-082 CrossRefGoogle Scholar
  59. Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8:e66832. doi: 10.1371/journal.pone.0066832 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Orihara T, Smith ME, Shimomura N, Iwase K, Maekawa N (2012) Diversity and systematics of the sequestrate genus Octaviania in Japan: two new subgenera and eleven new species. Persoonia 28:85–112. doi: 10.3767/003158512X650121 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pacioni G, Bologna MA, Laurenzi M (1991) Insect attraction by Tuber: a chemical explanation. Mycol Res 95:1359–1363CrossRefGoogle Scholar
  62. Pegler DN (1982) Agaricoid and boletoid fungi (Basidiomycota) from Malawi and Zambia. Kew Bull 37:254–271CrossRefGoogle Scholar
  63. Peintner U, Moser M, Vilgalys R (2002) Thaxterogaster is a taxonomic synonym of Cortinarius: new combinations and new names. Mycotaxon 81:177–184Google Scholar
  64. Perez Calvo JG, Maser Z, Maser C (1989) Note on fungi in small mammals from the Nothofagus forests in Argentina. Great Basin Nat 49:618–620Google Scholar
  65. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x
  66. Rinaldi AC, Comadini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  67. Sanon KB, Bâ AM, Dexheimer J (1997) Mycorrhizal status of some fungi fruiting beneath indigenous trees in Burkina Faso. For Ecol Manag 98:61–69CrossRefGoogle Scholar
  68. Schickmann S, Urban A, Kraütler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170:395–409. doi: 10.1007/s00442-012-2303-2
  69. Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, Germany, pp 33–74Google Scholar
  70. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. 3rd edn. Academic Press, 800Google Scholar
  71. Smith JE, Molina R, Huso MMP, Luoma DL, McKay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 80:186–204CrossRefGoogle Scholar
  72. Smith ME, Gryganskyi A, Bonito G, Nouhra E, Moreno-Arroyo B, Benny G (2013a) Phylogenetic analysis of the genus Modicella reveals an independent evolutionary origin of sporcarp-forming fungi in the Mortierellales. Fungal Genet Biol 61:61–68. doi: 10.1016/j.fgb.2013.10.001 CrossRefPubMedGoogle Scholar
  73. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013b) The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8:e55160. doi: 10.1371/journal.pone.0055160 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Smith ME, Amses KR, Elliott TF, Obase K, Aime MC, Henkel TW (2015) New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. et sp. nov., Castellanea pakaraimophila gen. et sp. nov., and Costatisporus caerulescens gen. et sp. nov. (Boletaceae, Boletales). IMA Fungus 6:297–317. doi: 10.5598/imafungus CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sulzbacher MA, Giachini AJ, Grebenc T, Silva BDB, Gurgel FE, Loiola MIB, Neves MA, Baseia IG (2013) A survey of an ectotrophic sand dune forest in the northeast Brazil. Mycosphere 4:1106–1116Google Scholar
  76. Sulzbacher MA, Grebenc T, Köhler A, Antoniolli ZI, Giachini AJ, Baseia IG (2015) Notes on mycophagy of Descomyces albus (Basidiomycota) in Southern Brazil. Mycosphere 6:620–629. doi: 10.5943/mycosphere/6/5/11
  77. Tao K, Chang MC, Liu B (1993) New species and new records of hypogeous fungi from China. IV. Acta Mycol Sin 12:103–106Google Scholar
  78. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. doi: 10.1016/j.fbr.2013.09.001 CrossRefGoogle Scholar
  79. Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2009) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–746. doi: 10.1038/ismej.2009.131 CrossRefPubMedGoogle Scholar
  80. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. doi: 10.1007/s00572-009-0274-x CrossRefPubMedGoogle Scholar
  81. Thoen D, Bâ AM (1989) Ectomycorrhizas and putative ectomycorrhizal fungi of Afzelia africana Sm. and Uapaca guineensis Müll. Arg. in southern Senegal. New Phytol 113:549–559CrossRefGoogle Scholar
  82. Trappe JM (1975) A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beih Nova Hedwigia 51:270–309Google Scholar
  83. Trappe JM (1979) The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon 9:297–340Google Scholar
  84. Trappe JM, Molina R, Luoma DL, Cázares E, Pilz D, Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-772. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station p 194Google Scholar
  85. Trappe MJ, Cromack KJ, Caldwell BA, Griffiths RP, Trappe JM (2012) Diversity of Mat-forming fungi in relation to soil properties, disturbance, and forest ecotype at crater lake national park, Oregon, USA. Diversity 4:196–223. doi: 10.3390/d4020196
  86. Trierveiler-Pereira L, Smith ME, Trappe JM, Nouhra ER (2015) Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota). Mycologia 107:90–103. doi: 10.3852/13-302 CrossRefPubMedGoogle Scholar
  87. van der Heijden MGA, Matin F, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi: 10.1111/nph.13288
  88. Verbeken A, Walleyn R (2004) A checklist of sequestrate fungi of tropical Africa. Bolletino del Gruppo Micologio G. Bresadola di Trento 47:97–153Google Scholar
  89. Verbeken A, Stubbe D, van de Putte K, Eberhardt U, Nuytinck J (2014) Tales of the unexpected: angiocarpous representatives of the Russulaceae in tropical South East Asia. Persoonia 32:13–24. doi: 10.3767/003158514X679119 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang B-C, Yu Y-N (1990) Two new species of gasteroid Russulales from China, with notes on taxonomy of Gymnomyces, Martellia and Zelleromyces. Mycol Res 94:457–462CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marcelo Aloisio Sulzbacher
    • 1
    Email author
  • Tine Grebenc
    • 2
  • Admir José Giachini
    • 3
  • Iuri Goulart Baseia
    • 4
  • Eduardo R. Nouhra
    • 5
  1. 1.Departamento de Micologia/CCBUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Slovenian Forestry InstituteLjubljanaSlovenia
  3. 3.Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Departamento de Botânica e ZoologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  5. 5.Instituto Multidisciplinario de Biología Vegetal (CONICET), FCEFyNUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations