Skip to main content

Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation

Abstract

The majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (Pi). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, Pi concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and Pi in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, root samples were collected from manipulated forested plots that had elevated soil Pi availability, either through direct Pi application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil Pi amendment; however, a direct correlation between soil Pi concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. Our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Amann R (2000) Methodological aspects of fluorescence in situ hybridization. Bioscience Microflora 19:85–91

    CAS  Article  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    CAS  Article  PubMed  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    CAS  Article  PubMed  Google Scholar 

  • Burke DJ (2008) Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest. Am J Bot 95:1416–1425

    Article  PubMed  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ (2016) Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiol Ecol 92:fiw024. doi:10.1093/femsec/fiw024

    Article  PubMed  Google Scholar 

  • DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012) Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry 109:189–202

    CAS  Article  Google Scholar 

  • Fiorentino I, Fahey TJ, Groffman PM, Driscoll CT, Eagar C, Siccama TG (2003) Initial responses of phosphorus biogeochemistry to calcium addition in a northern hardwood forest ecosystem. Can J For Res 1873:1864–1873

    Article  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    CAS  Article  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  Article  PubMed  Google Scholar 

  • Hewins CR, Carrino-Kyker SR, Burke DJ (2015) Seasonal variation in mycorrhizal fungi colonizing roots of Allium tricoccum (wild leek) in a mature mixed hardwood forest. Mycorrhiza 25:469–483

    CAS  Article  PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    CAS  Article  PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    CAS  Article  PubMed  Google Scholar 

  • Kluber LA, Carrino-Kyker SR, Coyle KP, DeForest JL, Hewins CR, Shaw AN, Smemo KA, Burke DJ (2012) Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests. PloS One 7:e48946. doi:10.1371/journal.pone.0048946

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lager I, Andréasson O, Dunbar TL, Andreasson E, Escobar MA, Rasmusson AG (2010) Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant Cell Environ 33:1513–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Likens G, Driscoll C, Buso D (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246

    CAS  Article  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microbe Interact 14:1140–1148

    CAS  Article  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Kenney DR (eds) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 403–430

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 393. US Government Printing Office, Washington

  • Olsson PA, Hansson MC, Burleigh SH (2006) Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microbiol 72:4115–4120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    CAS  Article  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    CAS  Article  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecolog Monogr 72:293

    Article  Google Scholar 

  • Robertson G, Sollins P, Ellis B, Lajtha K (1999) Exchangeable ions, pH, and cation exchange capacity. In: Robertson G, Coleman D, Bledsoe C, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp. 55–73

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Ra L, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Krüger M, Walker C (2011) Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme. PloS One 6:e23333. doi:10.1371/journal.pone.0023333

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sokolski S, Dalpé Y, Piché Y (2011) Phosphate transporter genes as reliable gene markers for the identification and discrimination of arbuscular mycorrhizal fungi in the genus Glomus. Appl Environ Microbiol 77:1888–1891

    CAS  Article  PubMed  Google Scholar 

  • Tatry M-V, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    CAS  Article  PubMed  Google Scholar 

  • Thomas GW, Hargrove WI (1984) The chemistry of soil acidity. In: Adams F (ed) Soil acidity and liming. American Society of Agronomy, Madison

    Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    CAS  Article  PubMed  Google Scholar 

  • van Aarle IM, Viennois G, Amenc LK, Tatry M-V, Luu DT, Plassard C (2007) Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza 17:487–494

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was primarily supported by funding from the R. Henry Norweb, Jr. Fellowship for Scientific Research in Horticulture and the National Science Foundation (DEB-0918167). Additional funding was provided by the Holden Arboretum Trust and the Corning Institute for Education and Research. We appreciate the work of Charlotte Hewins, Hannah Wilson, and Kurt Smemo who assisted in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah R. Carrino-Kyker.

Ethics declarations

Conflict of interest

Sarah R. Carrino-Kyker, Laurel A. Kluber, Kaitlin P. Coyle, and David J. Burke declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrino-Kyker, S.R., Kluber, L.A., Coyle, K.P. et al. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis 72, 123–133 (2017). https://doi.org/10.1007/s13199-016-0448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0448-1

Keywords

  • AM fungi
  • Inorganic phosphorus
  • Quantitative PCR
  • Reverse transcription