Skip to main content
Log in

Bacterial symbiosis in the fish gut and its role in health and metabolism

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The bacterial community in the fish gut is very dense compared to surrounding water, which suggests that gastrointestinal tract (GIT) provides a favorable ecological niche for survival. GIT bacteria can be broadly divided into two groups; autochthonous (able to colonize on the mucosal surface) and allochthonous (free living). From the host’s point of view, autochthonous bacteria are considered to be more important than allochthonous, as they provide both nutritional as well as disease prevention support to the host. Among their several functions, the autochthonous bacteria are believed to produce several types of extracellular enzymes, block the attachment site for pathogens and secrete a wide range of bacteriocins. Most of the bacterial species in the gut are non-culturable and thus several types of sophisticated techniques such as Denaturing Gradient Gel Electrophoresis (DGGE), Temperature Gradient Gel Electrophoresis (TGGE) and Next Generation Sequencing (NGS) have been introduced to explore the microbial communities in gut. In this present review, we have summarized the impact of gut bacteria in fish with special emphasis on extracellular enzyme production by gut microbiota, bacterial composition, mechanism of attachment in epithelial surface and their role in disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res Part B Appl Niomater 43:338–348

    Article  CAS  Google Scholar 

  • Ariole CN, Nwog HA, Chuku PW (2014) Enzymatic activities of intestinal bacteria isolated from farmed Clarias gariepinus. Aquacult Int 4:108–112

    Google Scholar 

  • Asfic M, Yoshijima T, Sugita H (2003) Characterization of the goldfish fecal microbiota by the fluorescent in situ hybridization method. Fish Sci 69:21–26

    Article  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012a) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of for fish pathogens. Aquaculture 326-329:1–8

    Article  CAS  Google Scholar 

  • Askarian F, Sperstad S, Merrifield DL, Ray AK, Ringø E (2012b) The effect of different feeding regimes on enzyme activity of Atlantic cod (Gadus morhua L.) gut microbiota. Aquaculture 44:841–846

    Article  CAS  Google Scholar 

  • Ayberk A, Suheyla K (2010) Dominant aerobic bacterial community of sea bass (Dicentrarchus labrax L.1758) larvae during weaning from Artemia to dry feed in culture conditions. Turk J Vet Anim Sci 34:501–506

    Google Scholar 

  • Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10:109–121

    Article  CAS  Google Scholar 

  • Balcazar JL, De Blas I, Ruiz-Zarzuela I, Vendrell D, Girones O, Muzquiz JL (2007) Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol Med Microbiol 51:185–193

    Article  CAS  PubMed  Google Scholar 

  • Balcazar JL, Vendrell D, De Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278:188–191

    Article  CAS  Google Scholar 

  • Banerjee G, Ray AK (2013) Characterization and identification of protease and amylase-producing bacteria isolated from gastrointestinal of climbing perch, Anabas testudineus. Decan Curr Sci 9:150–159

    Google Scholar 

  • Banerjee G, Ray AK, Askarian F, Ringø E (2013) Characterization and identification of enzyme-producing autochthonous bacteria from the gastrointestinal tract of two Indian air-breathing fish. Benef Microbes 4:277–284

    Article  CAS  PubMed  Google Scholar 

  • Banerjee G, Nandi A, Dan SK, Ghosh P, Ray AK (2016) Mode of association, enzyme producing ability and identification of autochthonous bacteria in the gastrointestinal tract of two Indian air-breathing fish, murrel (Channa punctatus) and stinging catfish (Heteropneustes fossilis). Proc Zool Soc. doi:10.1007/s12595-016-0167-x

    Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebra fish gut differentiation. Dev Biol 297:374–386

    Article  CAS  PubMed  Google Scholar 

  • Bernfeld P (1955) Amylase [alpha] and [beta]. In: Kolowick SP, Kaplan NO (eds) Methods of enzymology. Academic Press, New York, USA, pp. 149–150

    Google Scholar 

  • Bhatnagar A, Lamba R (2014) Antimicrobial ability and growth promoting effects of feed supplemented probiotic bacterium isolated from gut microflora of Cirrhinus mrigala1. J Integr Agric. doi:10.1016/S2095-3119(14)60836-4

    Google Scholar 

  • Birkbeck TH, Ringø E (2005) Pathogenesis and the gastrointestinal tract of growing fish. In: Naughton P (ed) Holzapfel W. Microbial Ecology in Growing Animals. Elsevier, Edinburgh, UK, pp. 208–234

    Google Scholar 

  • Blanch AR, Alsina M, Simon M, Jofre J (1997) Determination of bacteria associated with reared turbot (Scophthalmus maximus) larvae. J Appl Microbiol 82:729–734

    Article  Google Scholar 

  • Brunvold L, Sandaa RA, Mikkelsen H, Welde E, Bleie H, Bergh Ø (2007) Characterization of bacterial communities associated with early stages of intensively reared cod (Gadus morhua) using denaturing gradient gel electrophoresis (DGGE). Aquaculture 272:319–327

    Article  CAS  Google Scholar 

  • Camesano TA, Logan B (2000) Probing bacterial electrosteric interactions using atomic force microscopy. Environ Sci Technol 34:3354–3362

    Article  CAS  Google Scholar 

  • Carraturo A, Raieta K, Ottaviani D, Russo GL (2005) Inhibition of Vibrio parahaemolyticus by a bacteriocin- like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J Appl Microbiol 101:234–241

    Article  CAS  Google Scholar 

  • Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:S1046–S1051

    Google Scholar 

  • Chen D, Hanna PJ (1992) Attachment of vibrio pathogens to cells of rainbow trout, Oncorthynchus mykiss (Walbaum). J Fish Dis 15:331–337

    Article  Google Scholar 

  • Colowick SP, Kaplan NO (1955) In: Methods in Enzymology. Vol. I. Academic Press, New York, NY; p. 627

  • Dahiya T, Gahlawat SK, Sihag RC (2012) Elimination of pathogenic bacterium (Micrococcus sp.) by the use of probiotics. Turk J Fish Aquat Sci 12:185–187

    Article  Google Scholar 

  • Dan SK, Ray AK (2014) Characterization and identification of phytase producing bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Ann Microbiol. doi:10.1007/s13213-013-0664-3

    Google Scholar 

  • Dang ST, Dalsgaard A (2012) Escherichia coli contamination of fish raised in integrated pig-fish aquaculture systems in Vietnam. J Food Prot 75:1317-1319

  • Das P, Mandal S, Khan A, Manna SK, Ghosh K (2014) Distribution of extracellular enzyme-producing bacteria in the digestive tracts of 4 brackish water fish species. Turk J Zool 38:79–88

    Article  Google Scholar 

  • Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1:1–29

    Google Scholar 

  • Denison DA, Koehn RD (1977) Cellulase activity of Poroniaoedipus. Mycologia 69:592–601

    Article  CAS  Google Scholar 

  • Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523

    Article  PubMed  Google Scholar 

  • Dobson A, Cotter PD, Ross PR, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas A (2010) The symbiotic habit. Princeton University Press, New Jersey ISBN 978-0-691-11341-8

    Google Scholar 

  • Doyle RJ, Ofek I (1995) Adhesion of Microbial Pathogens. In: Methods in Enzymology. Academic Press, London; p. 253

  • Dutta D, Ghosh K (2015) Screening of extracellular enzyme-producing and pathogen inhibitory gut bacteria as putative probiotics in mrigal, Cirrhinus mrigala (Hamilton, 1822). Int J Fish Aqua Stud 2:310–318

    Google Scholar 

  • Efendi Y, Yusra (2014) Bacillus subtilis strain VITNJ1 potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) are cultured in floating net, Maninjau Lake, West Sumatra. Pak J Nutr 13:710–715

    Article  Google Scholar 

  • Engelen AJ, Vander Heeft FC, Randsdorf PHG, Smit ELC (1994) Simple and rapid determination of phytase activity. JAOAC Int 7:760–764

    Google Scholar 

  • Fishelson L, Montgomery WL, Myrberg AA (1985) A unique symbiosis in the gut of tropical herbivorous surgeon fishes (Acanthuridae: Teleostei) from the Red Sea. Science 229:49–51

    Article  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallo RL, Nakatsuji T (2011) Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol 131:1974–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly S, Prasad A (2012) Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev Fish Biol Fish 22:11–16

    Article  Google Scholar 

  • Ghosh K, Sen SK, Ray AK (2002) Characterization of Bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquacult 12:33–42

  • Ghosh S, Sinha A, Sahu C (2007) Isolation of putative probionts from the intestines of Indian major carps. Isr J Aquacult – Bamid 59:127–132

    Google Scholar 

  • Ghosh K, Roy M, Kar N, Ringø E (2010) Gastrointestinal bacterial in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): scanning electron microscopy and bacteriological study. Acta Icthyol Piscat 40:129–135

    Article  Google Scholar 

  • Grisez L, Chair M, Sorgeloos P, Ollevier F (1996) Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live feed. Dis Aquat Org 26:181–187

    Article  Google Scholar 

  • Hansen GH, Olafsen JA (1999) Bacterial interaction in early life stages of marine cold water fish. Microbial Ecol 38:1–26

    Article  CAS  Google Scholar 

  • He SX, Zhou ZG, Liu YC, Shi PJ, Yao B, Ringø E, Yoon I (2009) Effects of dietary Saccharomyces cerevisiae fermentation product (DVAQUA®) on growth performance, intestinal autochthonous bacterial community and non-speciWc immunity of hybrid tilapia (Oreochromis niloticus ♀ £ O. aureus ♂) cultured in cages. Aquaculture 294:99–107

    Article  Google Scholar 

  • He S, Zhou Z, Liu Y, Cao Y, Meng K, Shi P, Yao B, Ringø E (2010) Effects of the antibiotic growth promoters Xavomycin and Xorfenicol on the autochthonous intestinal microbiota of hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). Arch Microbiol 192:985–994

    Article  CAS  PubMed  Google Scholar 

  • Hellberg H, Bjerkӓs I (2000) The anatomy of the oesophagus, stomach and intestine in common wolffish (Anarhichas iupus). Acta Vet Scand 41:283–297

    CAS  PubMed  Google Scholar 

  • Hopkins MJ, Sharp R, Macfarlane GT (2002) Variation in human intestinal microbiota with age. Dig Liver Dis 34:S12–S18

    Article  PubMed  Google Scholar 

  • Horne MT, Baxendale A (1983) The adhesion of Vibrio anguillarum to host tissues and role in pathogenesis. J Fish Di 6:461–471

    Article  Google Scholar 

  • Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterization of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588

    Article  CAS  Google Scholar 

  • Huber IB, Spanggaard K, Appel F, Rossen L, Nielsen T, Gram L (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 96:117–132

    Article  CAS  PubMed  Google Scholar 

  • Ibrahem MD (2015) Evolution of probiotics in aquatic world: potential effects, the current status in Egypt and recent prospective. J Adv Res 6:765–791

    Article  PubMed  Google Scholar 

  • Israelachvili J (1992) Intermolecular and Surface Forces. ed. 2nd. Academic Press Limited, London

  • Jiang Y, Xie C, Yang G, Gong X, Chen X, Xu L, Bao B (2011) Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquac Res 42:499–505

    Article  CAS  Google Scholar 

  • Kan H, Zhao F, Zhang XX, Ren H, Gao S (2015) Correlations of gut microbial community shift with hepatic damage and growth inhibition of Carassius auratus induced by pentachlorophenol exposure. Environ Sci Technol 49:11894–11902

    Article  CAS  PubMed  Google Scholar 

  • Kar N, Ghosh K (2008) Isolation and characterization of extracellular enzyme producing Bacilli in the digestive tract of rohu, Labeo rohita (Hamilton) and murrel, Channa punctatus (Bloch). Asian Fish Sci 21:421–434

    Google Scholar 

  • Kelly P (2010) Gut function: effects on over- and under nutrition, intestinal defense and the microbiome. Proc Nutr Soc 69:261–268

    Article  PubMed  Google Scholar 

  • Khan A, Ghosh K (2012) Characterization and identification of gut associated phytase-producing bacteria in some fresh water fish cultured in pond. Acta Ichthyol Piscat 42:37–45

    Article  Google Scholar 

  • Kim D-H, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664

    Article  CAS  PubMed  Google Scholar 

  • Kim YR, Kim EY, Choi SY, Hossain MT, Oh R, Heo WS, Lee JM, Cho YC, Kong IS (2013) Effect of a probiotic strain, Enterococcus faecium, on the immune responses of olive flounder (Paralichthys olivaceus). J Microbiol Biotechnol 22:526–529

    Article  CAS  Google Scholar 

  • Knutton S (1995) Electron microscopical methods in adhesion. Methods Enzymol 253:145–158

    Article  CAS  PubMed  Google Scholar 

  • Kravacek K, Faris A, Ahne W, Mӓnsson I (1987) Adhesion of Aeromonas hydrophila and Vibrio anguillarum to fish cells and to mucus- coated glass slides. FEMS Microbiol Lett 42:85–89

    Article  Google Scholar 

  • Kuperman BI, Kuz’mina VV (1994) The ultrastructure of the intestinal epithelium in fish with different types of feeding. J Fish Biol 44:181–193

    Article  Google Scholar 

  • Lan CC, Love DR (2012) Molecular characterization of bacterial community structure along the intestinal tract of zebrafish (Danio rerio): a pilot study. Int Scholar Res Netw. doi:10.5402/2012/590385

    Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesel R, Pointel JG (1979) Settlement of bacterial flora in the digestive tract of rainbow trout scanning electron microscope study. Annales de Zoologic, Ecologic Animale 11:327–335

    Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B: Biointerfaces 36:81–90

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou Z, Yao B, Shi P, He S, Hølvold LB, Ringø E (2008) Effect of intra peritoneal injection of immune stimulatory substances on allochthonous gut microbiota of Atlantic salmon (Salmo salar L.) determined using denaturing gradient gel electrophoresis. Aquac Res 39:635–646

    Article  CAS  Google Scholar 

  • Liu Y, Zhou Z, He S, Yao B, Ringø E (2011) Microbial diversity in the sediment of a crab pond in Nanjing, China. Aquac Res 44:321–325

    Article  CAS  Google Scholar 

  • Lødmel JB, Mayhew TM, Myklebust R, Oslen RE, Espelid S, Ringø E (2001) Effect of three dietary oils on diseases susceptibility in Arctic char (Salvelinus alpines) during cohabitant challenge with Aeromonus almonicida ssp. Salmonocida. Aquac Res 32:935–945

    Article  Google Scholar 

  • Luo H, Guo P, Zhou Q (2012) Role of TLR4/NF-kB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS One. doi:10.1371/journal.pone.0046291

    Google Scholar 

  • Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol 156:3368–3378

    Article  CAS  Google Scholar 

  • MacQueen Leifson R, Homme JM, Jøstensen JP, Lie Ø, Myklebust R, Strøm T (2003) Phospholipids in formulated start feeds—effect on turbot (Scophthalmus maximus L.) larval growth and mitochondrial alteration in enterocytes. Aquac Nutr 9:43–54

    Article  Google Scholar 

  • Magarinos B, Romalde L, Noya M, Barja JL, Toranzo AE (1996) Adherence and invasive capacities of the fish pathogen Pasteurella Piscicida. FEMS Microbiol Lett 138:29–34

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analyt Chem 31:426–428

    Article  CAS  Google Scholar 

  • Molinari LM, de Oliveira SD, Pedroso RB, de Lucas Rodrigues Bittencourt N, Nakamura CV, Ueda-Nakamura T, de Abreu Filho BA, Filho BPD (2003) Bacterial microflora in the gastrointestinal tract of Nile tilapia, Oreochromis niloticus, cultured in a semi-intensive system. Acta Scientiarum Biol Sci 25:267–271

    Google Scholar 

  • Mondal S, Roy T, Ray AK (2010) Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of Bata, Labeo bata. J World Aquacult Soc 41:369–377

    Article  Google Scholar 

  • Montes M, Farto R, Pe’rez MJ, Nieto TP, Larsen JL, Christensen H (2003) Characterisation of Vibrio strains isolated from turbot (Scophthalmus maximus) cultured by phenotypic analysis, ribotyping and 16S rRNA gene sequence comparison. J Appl Microbiol 95:693–703

    Article  CAS  PubMed  Google Scholar 

  • Myklestad SM, Skånøy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved monoand polysaccharides in seawater. Mar Chem 56:279–286

  • Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K, Tamiya E (1998) Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  • Nes IF, Yoon S-S, Diep DB (2007) Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690

  • O’Toole R, von Hofsten J, Rosqvist R, Olsson P-E, Wolf-Watz H (2004) Visualization of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37:41–46

    Article  PubMed  CAS  Google Scholar 

  • Onarheim AM, Wiik R, Burghardt J, Stackebrandt E (1994) Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov. Syst Appl Microbio 17:370–379

    Article  Google Scholar 

  • Parent ME, Velegol D (2004) E. coli adhesion to silica in the presence of humic acid. Colloids Surf B: Biointerfaces 39:45–51

    Article  CAS  PubMed  Google Scholar 

  • Rawls JF, Mahowald A, Goodman AL, Trent CM, Gordon JI (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebra fish gut. Proc Nat Acad Sci USA 104:7622–7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray AK, Roy T, Mondal S, Ringø E (2010) Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res 41:1462–1469

    CAS  Google Scholar 

  • Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492

    Article  CAS  Google Scholar 

  • Rekecki A, Dierckens K, Laureau S, Boon N, Bossier P, Van den Broeck W (2009) Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.). Aquaculture 293:8–15

    Article  Google Scholar 

  • Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177–203

    Article  Google Scholar 

  • Ringø E, Olsen RE (1999) The effect of diet on aerobic bacterial flora associated with intestine of arctic charr (Salvelinus alpinus L.). J Appl Microbiol 86:22–28

    Article  PubMed  Google Scholar 

  • Ringø E, Strøm E, Tabachek JA (1995) Intestinal micro flora of salmonids: a review. Aquac Res 26:773–789

    Article  Google Scholar 

  • Ringø E, Lødemel JB, Myklebust R, Kaino T, Mayhew TM, Olsen RE (2001) Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpines L.) - an electron microscopical study. J Appl Microbiol 90:294–300

    Article  PubMed  Google Scholar 

  • Ringø E, Olsen RE, Mayhew TM, Myklebust R (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415

    Article  Google Scholar 

  • Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl A (2006) Characterization of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841

    Article  CAS  Google Scholar 

  • Ringø E, Myklebustd R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264

    Article  Google Scholar 

  • Roy T, Mondal S, Ray SK (2009) Phytase producing bacteria in digestive tract of some fresh water fish. Aquac Res 40:344–353

    Article  Google Scholar 

  • Saha S, Roy RN, Sen SK, Ray AK (2006) Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (P) and grass carp, Ctenopharyngodon idella (V). Aquac Res 37:380–388

    Article  CAS  Google Scholar 

  • Sahoo TK, Jena PK, Patel AK, Seshadri S (2016) Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review. Aquaculture 47:1013–1027

    Article  CAS  Google Scholar 

  • Saini VP, Ojha ML, Gupta MC, Nair P, Sharma A, Luhar V (2014) Effect of dietary probiotic on growth performance and disease resistance in Labeo rohita (ham.) fingerlings. Int J Fish Aquat Stud 1:7–11

    Google Scholar 

  • Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG (2012) Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One 7:e35398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos Y, Bandin I, Nieto TP, Barja JL, Toranzo AE, Ellis AE (1991) Cell-surface-associated properties of fish pathogenic bacteria. J Aquat Anim Health 3:297–301

    Article  Google Scholar 

  • Savage DC (1989) The normal human microflora composition. In: Midvedt T, Norin E (eds) Grubb R. The regulatory and protective role of the normal microflora. Stockton press, New York, USA, pp. 3–18

    Google Scholar 

  • Schmidt B, Mulder IE, Musk CC, Aminov RI, Lewis M, Stokes CR, Bailey M, Prosser JI, Gill BP, Pluske JR, Kelly D (2011) Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS One 6:e28284. doi:10.1371/journal pone.0028284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  • Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2014) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebra fish. Cell Host Microbe 12:277–288

    Article  CAS  Google Scholar 

  • Sivasubramanian K, Ravichandran S, Kavitha R (2012) Isolation and characterization of gut micro biota from some estuarine fishes. Marine Sci 2:1–6

    Article  Google Scholar 

  • Stellwag EJ, Smith TD, Luczkovich JJ (1995) Characterization and ecology of carboxymethylcellulase-producing anaerobic bacterial communities associated with the intestinal tract of the pinfish, Lagodon rhomboids. Appl Environ Microbiol 61:813–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russel J (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  • Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic application of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29:803–809

    Article  PubMed  Google Scholar 

  • Syvokiene J, Mickeniene S (1999) Micro-organisms in the digestive tract of fish as indicators of feeding condition and pollution. J Mar Sci 56:147–149

  • Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K, Nakayama J (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87

    Article  CAS  PubMed  Google Scholar 

  • Taoka Y, Maeda H, Jo JY, Kim SM, Park SI, Sakata T, Yoshikawa T (2006) Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish Sci 72:755–766

    Article  CAS  Google Scholar 

  • Torkildsen L, Lambert C, Nylund A, Magnesen T, Bergh Ø (2005) Bacteria associated with early life stages of the great scallop, Pecten maximus: impact on larval survival. Aquacult Int 13:575–592

    Article  Google Scholar 

  • Trust TJ, Bull LM, Currie BR, Buckley JT (1979) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), gold fish (Carassius auratus) and rainbow trout (Salmo gairdneri). J Fish Res Board Canada 36:1174–1179

    Article  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  • Vand ZDA, Alishahi M, Tabande MR (2014) Effects of different level of Lactobacillus casei as probiotic on growth performance and digestive enzymes activityof Barbus grypus. Int J Biosci 7:106–116

    Google Scholar 

  • Vanhoutte T, Huys G, de Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446

    Article  CAS  PubMed  Google Scholar 

  • Vijayabaskar P, Somasundaram ST (2008) Isolation of bacteriocin producing lactic acid bacteria from fish gut and probiotic activity common fresh water fish pathogen Aeromonas hydrophila. Biotechnol 7:124–128

    Article  Google Scholar 

  • Walker SL, Redman JA, Elimelech M (2004) Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 20:7736–7746

    Article  CAS  PubMed  Google Scholar 

  • Walter HE (1984) Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, Germany; p. 238

  • Wu S, Wang G, Angert ER, Wang W, Lim W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH (2014) The intestinal microbiome of fish under starvation. BMC Genomics 15:266–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551

    Article  CAS  PubMed  Google Scholar 

  • Yee LC, Ina-Salwany MY, Abdelhadi YM (2013) Antibacterial ability and molecular characterization of probionts isolated from gut microflora of cultured red tilapia. Asian J Anim Vet Adv 8:116–123

    Article  Google Scholar 

  • Zhou A, Liu Y, Shi P, He S, Yao B, Ringø E (2009) Molecular characterization of the autochthonous microbiota in the gastrointestinal tract of adult yellow grouper (Epinephelus awoara) cultured in cages. Aquaculture 286:184–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very much thankful to Department of Zoology, Visva-Bharati University, India for providing necessary supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Banerjee.

Ethics declarations

Conflict of interest

None of the authors have any types of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, G., Ray, A.K. Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis 72, 1–11 (2017). https://doi.org/10.1007/s13199-016-0441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0441-8

Keywords

Navigation