Abstract
Functional domains are semi-autonomous parts of proteins. The Per-Arnt-Sim (PAS) domain functions as signal-sensor in two-component systems of several bacteria. This domain exhibits large sequence diversity and is linked to other co-domains to modulate their function. In the present study, we analyzed the PAS domains found in the proteomes of several actinobacteria representing a variety of niches. PAS-domain containing proteins were identified with the HMMER program and characterized via an in silico approach. In general, the PAS proteins were found to be in the COG T (signal transduction) category implying their role was indeed in signal transduction. Most of the PAS proteins were found to be structurally conserved and moderately expressed. However, they showed a strong bias towards the lagging strand which may be a result of their involvement in adaptive evolution. A structure based phylogenetic analysis showed that PAS domains with similar interacting co-domains grouped together in a cluster irrespective of the bacterial genus from which they were identified. Thus, we may say that the association of PAS with its co-domains is based upon the PAS domain structure and not on the sequence.
This is a preview of subscription content, access via your institution.



Abbreviations
- PAS proteins:
-
PAS domain containing proteins
- PAS genes:
-
Gene sequence of PAS domain containing proteins
- ENc:
-
Effective number of codons
- COA:
-
Correspondence analysis
- CAI:
-
Codon adaptation index
References
Alloisio N et al. (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe In 23.5: 593-607
Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459
Badejo AC, Badejo AO, Shin KH, Chai YG (2013) A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PLoS One 8, e58066
Banerjee T, Basak S, Gupta SK, Ghosh TC (2004) Evolutionary forces in shaping the codon and amino acid usages in Blochmannia floridanus. J Biomol Struct Dyn 22:13–23
Barabote RD et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043
Bentley SD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147
Bibikov SI, Barnes LA, Gitin Y, Parkinson JS (2000) Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci U S A 97:5830–5835
Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R (2010) Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact 23:161–175
Chouaia B et al (2012) Genome sequence of Blastococcus saxobsidens DD2, a stone-inhabiting bacterium. J Bacteriol 194:2752–2753
Cui T, Zhang L, Wang X, He ZG (2009) Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 10:118
David M et al (1988) Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683
Dunham CM, Dioum EM, Tuckerman JR, Gonzalez G, Scott WG, Gilles-Gonzalez MA (2003) A distal arginine in oxygen-sensing heme-PAS domains is essential to ligand binding, signal transduction, and structure. Biochemistry 42:7701–7708
Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763
Eswar N, Eramian D, Webb B, Shen M-Y, Sali A (2008) Protein structure modeling with MODELLER. In: Structural proteomics, vol 426. Springer, p 145–159
Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM (1998) Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci USA 95(17): PMC21454
Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112
Gao S, Romdhane SB, Beullens S, Kaever V, Lambrichts I, Fauvart M, Michiels J (2014) Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli. Appl Microbiol Biotechnol 98:4589–4602
Gilles-Gonzalez MA, Gonzalez G (2004) Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol 96:774–783
Gtari M et al (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577
Hefti MH, Franaoijs KJ, De Vries SC, Dixon R, Vervoort J (2004) The PAS fold European. J Biochem 271:1198–1208
Huang ZJ, Edery I, Rosbash M (1993) PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259–262
Ikeda H et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531
Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34
Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622
Jaiswal RK, Manjeera G, Gopal B (2010) Role of a PAS sensor domain in the Mycobacterium tuberculosis transcription regulator Rv1364c. Biochem Biophys Res Commun 398:342–349
Jonathan T, Crosson S (2011) Ligand binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286. doi:10.1146/annurev-micro-121809-151631
Kaplan W, Littlejohn TG (2001) Swiss-PDB viewer (deep view). Brief Bioinform 2:195–197
Kataoka M, Li H, Arakawa S, Kuramitsu H (1997) Characterization of a methyl-accepting chemotaxis protein gene, dmcA, from the oral spirochete Treponema denticola. Infect Immun 65:4011–4016
Kay SA (1997) PAS, present, and future: clues to the origins of circadian clocks. Science 276:753–754
Kirby R et al (2012) Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of actinomycetoma. J Bacteriol 194:3544–3545
Konagurthu AS et al (2010) MUSTANG-MR structural sieving server: applications in protein structural analysis and crystallography. PLoS One 5, e10048
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291
Marchler-Bauer A et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229
McWilliam et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(W1):W597–W600
Monot M et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41:1282–1289
Narikawa R, Okamoto S, Ikeuchi M, Ohmori M (2004) Molecular evolution of PAS domain-containing proteins of filamentous cyanobacteria through domain shuffling and domain duplication. DNA Res 11:69–81
Normand P (2006) Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278
Normand P et al (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9
Normand P et al (2012) Genome sequence of radiation-resistant Modestobacter marinus strain BC501, a representative actinobacterium that thrives on calcareous stone surfaces. J Bacteriol 194:4773–4774
Ohnishi Y et al (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060
Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H (2013) Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–515
Ponting CP, Aravind L (1997) PAS: a multifunctional domain family comes to light. Curr Biol 7:R674–R677
Prasanna AN, Mehra S (2013) Comparative phylogenomics of pathogenic and non-pathogenic mycobacterium. PLoS One 8(8), e71248
Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, Millar JB, Buxton RS (2004) A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 314:259–267
Scheu PD, Kim OB, Griesinger C, Unden G (2010) Sensing by the membrane-bound sensor kinase DcuS: exogenous versus endogenous sensing of C(4)-dicarboxylates in bacteria. Future Microbiol 5:1383–1402
Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864
Sen A, Sur S, Bothra AK, Benson DR, Normand P, Tisa LS (2008) The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Antonie Van Leeuwenhoek 93:335–346
Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832
Shah N, Gaupp R, Moriyama H, Eskridge KM, Moriyama EN, Somerville GA (2013) Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus. BMC Genomics 14:524
Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295
Sievers et al. (2011) Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Sys Biol 7(1)
Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134
Stock AM, Mottonen JM, Stock JB, Schutt CE (1989) Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745–749
Tamura T, Hayakawa M, Hatano K (1998) A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol 48(Pt 3):995–1005
Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36
Taylor BL, Zhulin IB (1998) In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 28:683–690
Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506
Thakur S, Normand P, Daubin V, Tisa LS, Sen A (2013) Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria. BMC Genomics 14:474
Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82
Tice H et al (2010) Complete genome sequence of Nakamurella multipartita type strain (Y-104) Stand. Gsenomic Sci 2:168–175
Tsirigos A, Rigoutsos I (2005) A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res 33:922–933
Wang XJ et al (2010) Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. J Bacteriol 192:4526–4527
Wright F (1990) The effective number of codons used in a gene. Gene 87:23–29
Wu G, Culley DE, Zhang W (2005) Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology 151:2175–2187
Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406
Zhang Y et al (2011) Complete genome sequences of Mycobacterium tuberculosis strains CCDC5079 and CCDC5080, which belong to the Beijing family. J Bacteriol 193:5591–5592
Acknowledgments
This work is partially supported by Department of Biotechnology, Govt. of West Bengal, India through grant no. 206/Bt (Estd.)/RD-22/2014. IS acknowledges the receipt of BSR, UGC fellowship. AS is grateful to the DBT, for providing CREST Award and help in setting up Bioinformatics Centre, in the Department of Botany, University of North Bengal. LST is supported in part by a Hatch NH585.
Authors’ contribution
AS conceived the idea. IS, PN, AS designed the experiments. IS, LT, MG and AB performed data analysis. IS, AS, LT, MG and PN drafted the manuscript. All authors prepared the final manuscript and approved the final version.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This work is also partially supported by Department of Biotechnology, Govt. of West Bengal, India through grant no. 206/Bt(Estd.)/RD-22/2014. LST is supported in part by a Hatch NH585.
Conflict of interest
All of the authors of this study declare that he/she has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Sarkar, I., Normand, P., Tisa, L.S. et al. Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis 70, 69–78 (2016). https://doi.org/10.1007/s13199-016-0413-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13199-016-0413-z
Keywords
- Signal transduction
- Co-domain
- Structure-based phylogeny
- Domain-domain interaction
- Biological network