Advertisement

Symbiosis

, Volume 70, Issue 1–3, pp 17–29 | Cite as

Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation

  • Mariama Ngom
  • Rediet Oshone
  • Nathalie Diagne
  • Maimouna Cissoko
  • Sergio Svistoonoff
  • Louis S. Tisa
  • Laurent Laplaze
  • Mame Ourèye Sy
  • Antony ChampionEmail author
Article

Abstract

Environmental stresses are caused by human activities or natural events. Several of them including salinity, heavy metals, and extreme temperature affect both soil characteristics and plant growth and productivity. Actinorhizal plants are pioneer species that are able to grow in poor soils and improve soil fertility. They are widely used in agroforestry for different purposes including reclamation of degraded and contaminated lands. This capacity is mainly due to the plants forming a nitrogen-fixing symbiosis with actinobacteria known as Frankia. In comparison to uninoculated plants, plants in symbiosis with Frankia have significantly improved plant growth, total biomass, and nitrogen and chlorophyll content which enhance the development of actinorhizal plants and their resistance to abiotic stresses. However, to optimize the adaptation of actinorhizal species to different environments, selection of both symbiotic partners is necessary. Frankia strains vary in their sensitivity and response to stress including salinity, heavy metals, extreme pH and drought. In this paper, we review the response of different Frankia strains to environmental stresses and their role that they play in the adaptation of actinorhizal plants to stressful conditions.

Keywords

Frankia Actinorhizal plants Environmental stresses Effective symbiosis 

Notes

Acknowledgments

Our work is supported in part by the IRD (Institut de Recherche pour le Développement), the AUF (Agence Universitaire de la Francophonie) through the inter-regional doctoral college in food and plant biotechnology (CD-BIOVEGAGRO), a JGI Community Sequencing Programme (CSP 580) and the USDA National Institute of Food and Agriculture Hatch 022821.

References

  1. Alskog G, Huss-Danell K (1997) Superoxide dismutase, catalase and nitrogenase activities of symbiotic Frankia (Alnus incana) in response to different oxygen tensions. Physiol Plant 99:286–292CrossRefGoogle Scholar
  2. Bagnarol E, Popovici J, Alloisio N, et al. (2007) Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol Plant 130:380–390CrossRefGoogle Scholar
  3. Baker D, O’Keefe D (1984) A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant Soil 78:23–28CrossRefGoogle Scholar
  4. Baker E, Tang Y, Chu F, Tisa LS (2015) Molecular responses of Frankia sp. strain QA3 to naphthalene. Can J Microbiol 61:281–292PubMedCrossRefGoogle Scholar
  5. Bassi CA, Benson DR (2007) Growth characteristics of the slow-growing actinobacterium Frankia sp. strain CcI3 on solid media. Physiol Plant 130:391–399CrossRefGoogle Scholar
  6. Batista-Santos P, Duro N, Rodrigues AP, et al. (2015) Is salt stress tolerance in Casuarina glauca sieb. ex spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109PubMedCrossRefGoogle Scholar
  7. Beauchemin NJ, Furnholm T, Lavenus J, et al. (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bélanger P-A, Beaudin J, Roy S (2011a) High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 85:92–97PubMedCrossRefGoogle Scholar
  9. Bélanger P-A, Bissonnette C, Bernèche-D’Amours A, et al. (2011b) Assessing the adaptability of the actinorhizal symbiosis in the face of environmental change. Environ Exp Bot 74:98–105CrossRefGoogle Scholar
  10. Bélanger P-A, Bellenger J-P, Roy S (2013) Strong modulation of nutrient distribution in Alnus glutinosa as a function of the actinorhizal symbiosis. Botany 91:218–224CrossRefGoogle Scholar
  11. Bélanger P-A, Bellenger J-P, Roy S (2015) Heavy metal stress in alders: tolerance and vulnerability of the actinorhizal symbiosis. Chemosphere 138:300–308PubMedCrossRefGoogle Scholar
  12. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedPubMedCentralGoogle Scholar
  13. Berry AM, Harriott OT, Moreau RA, et al. (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci 90:6091–6094PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bissonnette C, Fahlman B, Peru KM, et al. (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecol Eng 68:167–175CrossRefGoogle Scholar
  15. Budowski G, Russo R (1997) Nitrogen-fixing trees and nitrogen fixation in sustainable agriculture: research challenges. Soil Biol Biochem 29:767–770CrossRefGoogle Scholar
  16. Burggraaf AJP, Shipton WA (1982) Estimates of Frankia growth under various pH and temperature regimes. Plant Soil 69:135–147CrossRefGoogle Scholar
  17. Burleigh SH, Dawson JO (1991) Effects of sodium chloride and melibiose on the in vitro growth and sporulation of Frankia strain HFPCcI3 isolated from Casuarina cunninghamiana. Aust J Ecol 16:531–535Google Scholar
  18. Burleigh S, Torrey JG (1990) Effectiveness of different Frankia cell types as inocula for the actinorhizal plant Casuarina. Appl Environ Microbiol 56:2565–2567PubMedPubMedCentralGoogle Scholar
  19. Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902PubMedCrossRefGoogle Scholar
  20. Carrasco A, Salyards JR, Berry AM (1995) Studies of two Frankia strains isolated from Trevoa trinervis miers. Plant Soil 171:359–363CrossRefGoogle Scholar
  21. Carú M (1993) Characterization of native Frankia strains isolated from Chilean shrubs (Rhamnaceae). Plant Soil 157:137–145Google Scholar
  22. Carú M, Cabello A (1997) Isolation and characterization of the symbiotic phenotype of antibiotic-resistant mutantsof Frankia from rhamnaceae. World J Microbiol Biotechnol 14:205–210CrossRefGoogle Scholar
  23. Carú M, Becerra A, Sepúlveda D, Cabello A (2000) Isolation of infective and effective Frankia strains from root nodules of Alnus acuminata (betulaceae). World J Microbiol Biotechnol 16:647–651CrossRefGoogle Scholar
  24. Cournoyer B, Normand P (1994) Characterization of a spontaneous thiostrepton-resistant Frankia alni infective isolate using PCR-RFLP of nif and glnII genes. Soil Biol Biochem 26:553–559CrossRefGoogle Scholar
  25. Dawson JO, Gibson AH (1987) Sensitivity of selected Frankia isolates from Casuarina, Allocasuarina and North American host plants to sodium chloride. Physiol Plant 70:272–278CrossRefGoogle Scholar
  26. Diagne N, Arumugam K, Ngom M, et al (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International 948258, 9 pages. doi:10.1155/2013/948258.Google Scholar
  27. Diagne N, Ngom M, Djighaly PI, et al. (2015) Remediation of heavy metal-contaminated soils and enhancement of their fertility with actinorhizal plants. Heavy Metal Contamination of Soils. Springer, In, pp. 355–366Google Scholar
  28. Diem HG, Dommergues YR (1985) In vitro production of specialized reproductive torulose hyphae by Frankia strain ORS 021001 isolated from Casuarina junghuhniana root nodules. In: Frankia and Actinorhizal Plants. Springer, pp 17–29Google Scholar
  29. Diem HG, Gauthier D, Dommergues YR (1982) Isolation of Frankia from nodules of Casuarina equisetifolia. Can J Microbiol 28:526–530CrossRefGoogle Scholar
  30. Diem HG, Gauthier D, Dommergues Y (1983) An effective strain of Frankia from Casuarina sp. Can J Bot 61:2815–2821CrossRefGoogle Scholar
  31. Dobritsa SV (1998) Grouping of Frankia strains on the basis of susceptibility to antibiotics, pigment production and host specificity. Int J Syst Bacteriol 48:1265–1275CrossRefGoogle Scholar
  32. Dommergues YR (1997) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29:931–941CrossRefGoogle Scholar
  33. Duhoux E, Franche C (2003) Les nodules actinorhiziens de Casuarina. Biofutur 235:45–49Google Scholar
  34. Duro N, Batista-Santos P, da Costa M, et al. (2015) The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N2-fixing Frankia bacteria based on the analysis of Nitrogen and Carbon metabolism. Plant Soil 398:1–11Google Scholar
  35. Faure-Raynaud M, Daniere C, Moiroud A, Capellano A (1990) Preliminary characterization of an ineffective Frankia derived from a spontaneously neomycin-resistant strain. Plant Soil 129:165–172CrossRefGoogle Scholar
  36. Fauzia YH (1999) Frankia and Rhizobium strains as inoculum for fast growing trees in saline environment. Pak J Bot 31:173–182Google Scholar
  37. Fontaine MS, Lancelle SA, Torrey JG (1984) Initiation and ontogeny of vesicles in cultured Frankia sp. strain HFPArI3. J Bacteriol 160:921–927PubMedPubMedCentralGoogle Scholar
  38. Fontaine MS, Young PH, Torrey JG (1986) Effects of long-term preservation of Frankia strains on infectivity, effectivity, and in vitro nitrogenase activity. Appl Environ Microbiol 51:694–698PubMedPubMedCentralGoogle Scholar
  39. Furnholm T, Beauchemin N, Tisa LS (2012) Development of a semi-high-throughput growth assay for the filamentous actinobacteria Frankia. Arch Microbiol 194:13–20PubMedCrossRefGoogle Scholar
  40. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534Google Scholar
  41. Gauthier D, Diem HG, Dommergues Y (1981) In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl Environ Microbiol 41:306–308PubMedPubMedCentralGoogle Scholar
  42. Girgis MGZ, Ishac YZ, Diem HG, Dommergues YR (1992) Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecol 13:443–451Google Scholar
  43. Gomaa AM, Abo-Aba SEM, Awad NS (2008) Isolation, characterization and genetic differentiation of Frankia sp. isolated from ecologically different egyptian locations. Res J Cell Mol Biol 2:6–17Google Scholar
  44. Greer CW, Mehta P, Labelle S, et al. (2005) Remediation and revegetation of tar sands composite tailings containing naphthenic acids and high salt using alder-Frankia symbionts. In: Remediation Technologies symposium proceedings. Banff, Alberta, Canada, p. 11Google Scholar
  45. Gtari M, Ghodhbane-Gtari F, Nouioui I, et al. (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Nature 5:13112. doi: 10.1038/srep13112 Google Scholar
  46. Harriott OT, Bourret A (2003) Improving dispersed growth of Frankia using carbopol. In: Frankia Symbiosis. Springer, pp 69–74Google Scholar
  47. Huang Y, Benson DR (2012) Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture. Arch Microbiol 194:21–28PubMedCrossRefGoogle Scholar
  48. Huss-Danell K (1997) Tansley Review No. 93. Actinorhizal symbioses and their N 2 fixation. New Phytol 136:375–405CrossRefGoogle Scholar
  49. Huss-Danell K, Winship LJ, Hahlin A-S (1987) Loss and recovery of nitrogenase in Abuts incana nodules exposed to low oxygen and low temperature. Physiol Plant 70:355–360CrossRefGoogle Scholar
  50. Hyland BPM (1983) Germination, growth and mineral ion concentrations of Casuarina species under saline conditions. Aust J Bot 31:1–164CrossRefGoogle Scholar
  51. Izquierdo I, Caravaca F, Alguacil MM, et al. (2005) Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol 30:3–10CrossRefGoogle Scholar
  52. Karthikeyan A, Deeparaj B, Nepolean P (2009) Reforestation in bauxite mine spoils with Casuarina equisetifolia frost. and beneficial microbes. For Trees Livelihoods 19:153–165CrossRefGoogle Scholar
  53. Klucas RV, Hanus FJ, Russell SA, Evans HJ (1983) Nickel: a micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci 80:2253–2257PubMedPubMedCentralCrossRefGoogle Scholar
  54. Krumholz GD, Chval MS, McBride MJ, Tisa LS (2003) Germination and physiological properties of Frankia spores. In: Frankia symbiosis. Springer, pp. 57–67Google Scholar
  55. Lancelle SA, Torrey JG, Hepler PK, Callaham DA (1985) Ultrastructure of freeze-substituted Frankia strain HFPCcI 3, the actinomycete isolated from root nodules of Casuarina cunninghamiana. Protoplasma 127:64–72CrossRefGoogle Scholar
  56. Lechevalier MP (1994) Taxonomy of the genus Frankia (actinomycetales). Int J Syst Bacteriol 44:1–8CrossRefGoogle Scholar
  57. Lefrançois E, Quoreshi A, Khasa D, et al (2007) Alder-Frankia symbionts enhance the remediation and revegetation of oil sands tailings.Google Scholar
  58. Lefrançois E, Quoreshi A, Khasa D, et al. (2010) Field performance of alder-Frankia symbionts for the reclamation of oil sands sites. Appl Soil Ecol 46:183–191CrossRefGoogle Scholar
  59. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  60. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal–contaminated soils. J Environ Qual 30:1919–1926PubMedCrossRefGoogle Scholar
  61. Lumini E, Bosco M, Puppi G, et al. (1994) Field performance of Alnus cordata loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biol Biochem 26:659–661CrossRefGoogle Scholar
  62. Mallet PL, Roy S (2014) The Symbiosis between Frankia and Alder Shrubs Results in a tolerance of the environmental stress associated with tailings from the Canadian Oil Sands Industry. J Pet Env Biotechnol 5:2Google Scholar
  63. Mansour SR (2003) Survival of Frankia strains under different soil conditions. Online J Biol Sci 3:618–626CrossRefGoogle Scholar
  64. Mansour SR, Dewedar A, Torrey JG (1990) Isolation, culture, and behavior of Frankia strain HFPCgI4 from root nodules of Casuarina glauca. Bot Gaz:490–496Google Scholar
  65. Markham JH (2005) The effect of Frankia and Paxillus involutus on the performance of Alnus incana subsp. rugosa in mine tailings. Botany 83:1384–1390Google Scholar
  66. Meesters TM, Van Genesen ST, Akkermans ADL (1985) Growth, acetylene reduction activity and localization of nitrogenase in relation to vesicle formation in Frankia strains Cc1. 17 and Cp1. 2. Arch Microbiol 143:137–142CrossRefGoogle Scholar
  67. Dijk C van, Merkus E (1976) A microscopical study of the development of a spore-like stage in the life cycle of the root-nodule endophyte of Alnus glutinosa (L.) gaertn. New Phytol 77:73–91.Google Scholar
  68. Miettinen P (1993) The response of a free-living and an endophytic Frankia to extreme environmental conditions. Symbiosis 15:121–134Google Scholar
  69. Moffat AJ, others (2000) Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry 73:215–223.Google Scholar
  70. Moiroud A (1996) Diversité et écologie des plantes actinorhiziennes. Acta Bot Gallica 143:651–661CrossRefGoogle Scholar
  71. Monz CA, Schwintzer CR (1989) The physiology of spore-negative and spore-positive nodules of Myrica gale. Plant Soil 118:75–87CrossRefGoogle Scholar
  72. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  73. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  74. Murry MA, Fontaine MS, Tjepkema JD (1984a) Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139:162–166PubMedCrossRefGoogle Scholar
  75. Murry MA, Fontaine MS, Torrey JG (1984b) Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. In: Frankia symbioses. Springer, pp. 61–78Google Scholar
  76. Myers AK, Tisa LS (2004) Isolation of antibiotic-resistant and antimetabolite-resistant mutants of Frankia strains EuI1c and Cc1. 17. Can J Microbiol 50:261–267PubMedCrossRefGoogle Scholar
  77. Newcomb W, Callaham D, JG T, RL P (1979) Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot Gaz 140:S22–S34CrossRefGoogle Scholar
  78. Ng BH (1987) The effects of salinity on growth, nodulation and nitrogen fixation of Casuarina equisetifolia. Plant Soil 103:123–125CrossRefGoogle Scholar
  79. Normand P, Orso S, Cournoyer B, et al. (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family frankiaceae. Int J Syst Bacteriol 46:1–9PubMedCrossRefGoogle Scholar
  80. Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470PubMedCrossRefGoogle Scholar
  81. Oshone R, Mansour SR, Tisa LS (2013) Effect of salt stress on the physiology of Frankia sp strain CcI6. J Biosci 38:699–702PubMedCrossRefGoogle Scholar
  82. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  83. Parsons R, Silvester WB, Harris S, et al. (1987) Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol 83:728–731PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979PubMedCrossRefGoogle Scholar
  85. Perradin Y, Mottet MJ, Lalonde M (1983) Influence of phenolics on in vitro growth of Frankia strains. Can J Bot 61:2807–2814CrossRefGoogle Scholar
  86. Perrine-Walker F, Gherbi H, Imanishi L, et al. (2011) Symbiotic signaling in actinorhizal symbioses. Curr Protein Pept Sci 12:156–164PubMedCrossRefGoogle Scholar
  87. Popovici J, Comte G, Bagnarol É, et al. (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451–2460PubMedPubMedCentralCrossRefGoogle Scholar
  88. Prin Y, Maggia L, Picard B, et al. (1991) Electrophoretic comparison of enzymes from 22 single-spore cultures obtained from Frankia strain ORS 140102. FEMS Microbiol Lett 77:223–227CrossRefGoogle Scholar
  89. Reddell P, Bowen GD, Robson AD (1985) The effects of soil temperature on plant growth, nodulation and nitrogen fixation in Casuarina cunninghamiana miq. New Phytol 101:441–450CrossRefGoogle Scholar
  90. Reddell P, Foster RC, Bowen GD (1986) The effects of sodium chloride on growth and nitrogen fixation in Casuarina obesa miq. New Phytol 102:397–408CrossRefGoogle Scholar
  91. Rehan M, Furnholm T, Finethy RH, et al. (2014a) Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport. Appl Microbiol Biotechnol 98:8005–8015PubMedCrossRefGoogle Scholar
  92. Rehan M, Kluge M, Franzle S, Kellner H, Ullrich R, Hofrichter M (2014b) Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealky;ation, and dechlorination. Appl Microbiol Biotechnol 98:6125–6135PubMedCrossRefGoogle Scholar
  93. Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ringo E, Clausen E, Lovaas E, et al. (1995) Effects of extracts of Alnus glutinosa seeds on growth of Frankia strain ArI3 under static and fermentor culture conditions. Plant Soil 176:283–288CrossRefGoogle Scholar
  95. Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Botany 85:237–251Google Scholar
  96. Sadio S (1991) Pédogenèse et potentialités forestières des sols sulfatés acides salés des tannes du sine saloum, Sénégal. Editions de l’ORSTOM. ISBN 2–7099-1039-X.Google Scholar
  97. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. doi: 10.1093/aob/mct048 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Savouré A, Lim G (1991) Characterization of an effective Frankia (ISU 0224887) isolated from nodules of Gymnostoma sumatranum. Plant Soil 131:21–27CrossRefGoogle Scholar
  99. Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review. Folia Microbiol (Praha) 56:1–9CrossRefGoogle Scholar
  100. Sayed WF, Wheeler CT, Zahran HH, Shoreit AAM (1997) Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biol Fertil Soils 25:349–353CrossRefGoogle Scholar
  101. Sayed WF, Mohaowad SM, El-Karim MA (2000) Effect of Al, Co, and Pb ions on growth of Frankia spp. in a mineral medium. Folia Microbiol (Praha) 45:153–156CrossRefGoogle Scholar
  102. Sayed WF, Wheeler CT, El-Sharouny HM, et al. (2002) Effects of storage time and temperature on the infectivity and effectiveness of Frankia entrapped in polyacrylamide gel. Folia Microbiol (Praha) 47:545–550CrossRefGoogle Scholar
  103. Schwencke J (1991) Rapid, exponential growth and increased biomass yield of some Frankia strains in buffered and stirred mineral medium (BAP) with phosphatidyl choline. Plant Soil 137:37–41CrossRefGoogle Scholar
  104. Schwintzer C (1990) Spore positive and spore negative nodules. In: The biology of Frankia and actinorhizal plants. pp 177–193Google Scholar
  105. Sellstedt A, Smith GD (1990) Nickel is essential for active hydrogenase in free-living Frankia isolated from Casuarina. FEMS Microbiol Lett 70:137–140Google Scholar
  106. Shash SM (2009) Molecular analysis of phenotypic diversity among four Frankia isolated from Casuarina nodules in Egypt. 1: some clonal variation among four Frankia isolates. Aust J Basic Appl Sci 3:529–535Google Scholar
  107. Silvester WB, Silvester JK, Torrey JG (1988) Adaptation of nitrogenase to varying oxygen tension and the role of the vesicle in root nodules of Alnus incana ssp. rugosa. Can J Bot 66:1772–1779Google Scholar
  108. Simonet P, Normand P, Hirsch AM, Akkermans AD (1989) The genetics of Frankia-Actinorhizal symbiosis. In: Gresshof PM (ed) In Molecular biology of symbiotic nitrogen fixation, vol 1989. C.R.C. Press, Boca Raton, pp. 77–109Google Scholar
  109. Simonet P, Bosco M, Chapelon C, et al. (1994) Molecular characterization of Frankia microsymbionts from spore-positive and spore-negative nodules in a natural alder stand. Appl Environ Microbiol 60:1335–1341PubMedPubMedCentralGoogle Scholar
  110. Singh SS, Singh A, Srivastava A, et al. (2010) Characterization of frankial strains isolated from Hippophae salicifolia D. Don, based on physiological, SDS–PAGE of whole cell proteins and RAPD PCR analyses. World J Microbiol Biotechnol 26:985–992CrossRefGoogle Scholar
  111. Smolander A, Sarsa M-L (1990) Frankia strains of soil under Betula pendula: behaviour in soil and in pure culture. Plant Soil 122:129–136CrossRefGoogle Scholar
  112. Smolander A, Van Dijk C, Sundman V (1988) Survival of Frankia strains introduced into soil. Plant Soil 106:65–72CrossRefGoogle Scholar
  113. Srivastava A, Singh SS, Mishra AK (2013) Sodium transport and mechanism (s) of sodium tolerance in Frankia strains. J Basic Microbiol 53:163–174PubMedCrossRefGoogle Scholar
  114. Tani C, Sasakawa H (2000) Salt tolerance of Elaeagnus macrophylla and Frankia Ema1 strain isolated from the root nodules of E. macrophylla. Soil Sci Plant Nutr 46:927–937CrossRefGoogle Scholar
  115. Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222CrossRefGoogle Scholar
  116. Tisa LS, Ensign JC (1987a) Comparative physiology of nitrogenase activity and vesicle development for Frankia strains CpI1, ACN1 AG, EAN1pec and EUN1f. Arch Microbiol 147:383–388CrossRefGoogle Scholar
  117. Tisa LS, Ensign JC (1987b) The calcium requirement for functional vesicle development and nitrogen fixation by Frankia strains EAN1pec and CpI1. Arch Microbiol 149:24–29CrossRefGoogle Scholar
  118. Tisa LS, McBride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can J Bot 61:2768–2773CrossRefGoogle Scholar
  119. Tisa LS, Chval MS, Krumholz GD, Richards J (1999) Antibiotic resistance patterns of Frankia strains. Can J Bot 77:1257–1260Google Scholar
  120. Tjepkema JD, Murry MA (1989) Respiration and nitrogenase activity in nodules of Casuarina cunninghamiana and cultures of Frankia sp. HFP020203: effects of temperature and partial pressure of O2. Plant Soil 118:111–118CrossRefGoogle Scholar
  121. Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined nutrient media.Google Scholar
  122. Tjepkema JD, Ormerod W, Torrey JG (1981) Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. CpI1. Can J Microbiol 27:815–823PubMedCrossRefGoogle Scholar
  123. Tzean SS, Torrey JG (1989) Spore germination and the life cycle of Frankia in vitro. Can J Microbiol 35:801–806CrossRefGoogle Scholar
  124. Van der Moezel PG, Walton CS, Pearce-Pinto GVN, Bell DT (1989) Screening for salinity and waterlogging tolerance in five Casuarina species. Landsc Urban Plan 17:331–337CrossRefGoogle Scholar
  125. Vogel CS, Dawson JO (1986) In vitro growth of five Frankia isolates in the presence of four phenolic acids and juglone. Soil Biol Biochem 18:227–231CrossRefGoogle Scholar
  126. Vogel CS, Dawson JO (1991) Nitrate reductase activity, nitrogenase activity and photosynthesis of black alder exposed to chilling temperatures. Physiol Plant 82:551–558CrossRefGoogle Scholar
  127. Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182PubMedGoogle Scholar
  128. Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) gaertn. Plant Soil 231:81–90CrossRefGoogle Scholar
  129. Winship LJ, Tjepkema JD (1985) Nitrogen fixation and respiration by root nodules of Alnus rubra Bong.: Effects of temperature and oxygen concentration*. In: Frankia and Actinorhizal Plants. Springer, pp 91–107Google Scholar
  130. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464PubMedCrossRefGoogle Scholar
  131. Zimpfer JF, Igual JM, McCarty B, et al. (2004) Casuarina cunninghamiana Tissue extracts stimulate the growth of Frankia and differentially alter the growth of other soil microorganisms. J Chem Ecol 30:439–452PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mariama Ngom
    • 1
    • 2
    • 3
  • Rediet Oshone
    • 4
  • Nathalie Diagne
    • 1
    • 5
  • Maimouna Cissoko
    • 1
    • 2
    • 3
    • 6
  • Sergio Svistoonoff
    • 1
    • 3
    • 6
  • Louis S. Tisa
    • 4
  • Laurent Laplaze
    • 1
    • 3
    • 7
  • Mame Ourèye Sy
    • 1
    • 2
  • Antony Champion
    • 1
    • 3
    • 7
    Email author
  1. 1.Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE)Centre de Recherche de Bel AirDakarSénégal
  2. 2.Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakar BPSénégal
  3. 3.Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel AirDakarSénégal
  4. 4.Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamUSA
  5. 5.Centre National de Recherches AgronomiquesInstitut Sénégalais de Recherches Agricoles (CNRA/ISRA)BambeySénégal
  6. 6.Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université Montpellier/Supagro)MontpellierFrance
  7. 7.Institut de Recherche pour le Développement (IRD)MontpellierFrance

Personalised recommendations