, Volume 70, Issue 1–3, pp 87–96 | Cite as

Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration



Nitrogen-fixing root nodules on actinorhizal plants have varying internal architectures, implying diversity in how Frankia sp. integrates into plant physiologies. To understand this integration we compared the metabolomes of Alnus glutinosa and Casuarina cunninghamiana root nodules with roots from uninfected plants. High throughput gas chromatography–mass spectrometry (GC-MS) was done on extracts of nodules and roots from uninfected seedlings. Over 118 metabolites in C. cunninghamiana roots and nodules and over 163 in A. glutinosa roots and nodules were identified; between one-third to one-half of the metabolites significantly increased or decreased between roots and nodules. Amino acid patterns varied between the plants with only glutamate and alanine, which may be conducive to the induction of nitrogenase, and citrulline, elevated in nodules of both. Sugar levels were similar between species excepting a striking increase of maltose and cellobiose in C. cunninghamiana nodules indicating starch mobilization and cell wall modification. Stress related compounds increased in both systems. Phenylacetic acid was elevated in A. glutinosa nodules. High ethanolamine content was found in C. cunninghamiana nodules suggesting lipid degradation. We conclude that C. cunninghamiana responds more robustly to the presence of the endophyte than A. glutinosa with metabolite patterns consistent with different strategies used for compartmentalizing the symbiont from uninfected tissues.


Actinorhizal Symbiosis Nodules Metabolomics Frankia Casuarina Alnus (alder) 

Supplementary material

13199_2016_379_MOESM1_ESM.xlsx (544 kb)
Table S1List of identified and unidentified compounds from GC-MS analysis of Alnus glutinosa root nodules, roots from uninfected plants and roots from infected plants. (XLSX 544 kb)
13199_2016_379_MOESM2_ESM.xlsx (288 kb)
Table S2List of identified and unidentified compounds from GC-MS analysis of Casuarina cunninghamiana root nodules and roots from uninfected plants. (XLSX 287 kb)


  1. Auguy F, Abdel-Lateif K, Doumas P et al (2011) Activation of the isoflavonoid pathway in actinorhizal symbioses. Funct Plant Biol 38:690. doi:10.1071/FP11014 CrossRefGoogle Scholar
  2. Baker A, Hill GF, Parsons R (1997) Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J Exp Bot 48:67–73. doi:10.1093/jxb/48.1.67 CrossRefGoogle Scholar
  3. Barclay LRC, Xi F, Norris JQ (2006) Antioxidant properties of phenolic lignin model compounds. J Wood Chem Technol 17:73–90CrossRefGoogle Scholar
  4. Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522. doi:10.1016/j.pbi.2006.07.011 CrossRefPubMedGoogle Scholar
  5. Bassi CA, Benson DR (2007) Growth characteristics of the slow-growing actinobacterium Frankia sp. strain CcI3 on solid media. Physiol Plant 130:391–399. doi:10.1111/j.1399-3054.2007.00866.x CrossRefGoogle Scholar
  6. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedPubMedCentralGoogle Scholar
  7. Berg RH (1990) Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma 159:35–43. doi:10.1007/BF01326633 CrossRefGoogle Scholar
  8. Berg RH, McDowell L (1988) Cytochemistry of the wall of infected cells in Casuarina actinorhizae. Can J Bot 66:2038–2047CrossRefGoogle Scholar
  9. Berry AM, Harriott OT, Moreau RA et al (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci 90:6091–6094. doi:10.1073/pnas.90.13.6091 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blom J, Roelofsen W, Akkermans ADL (1981) Assimilation of nitrogen in root nodules of alder (Alnus glutinosa). New Phytol 89:321–326. doi:10.1111/j.1469-8137.1981.tb07492.x CrossRefGoogle Scholar
  11. Bowes B, Callaham D, Torrey JG (1977) Time-lapse photographic observations of morphogenesis in root nodules of Comptonia peregrina (Myricaceae). Am J Bot 64:516–525CrossRefGoogle Scholar
  12. Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902. doi:10.1126/science.199.4331.899 CrossRefPubMedGoogle Scholar
  13. Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18. doi:10.4161/psb.6.1.14037 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carro L, Pujic P, Alloisio N et al (2015) Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. ISME J. doi:10.1038/ismej.2014.257 PubMedPubMedCentralGoogle Scholar
  15. Chen JH, Ho C-T (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378. doi:10.1021/jf970055t CrossRefGoogle Scholar
  16. Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138. doi:10.1016/j.ympev.2003.08.001 CrossRefPubMedGoogle Scholar
  17. Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography–mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318. doi:10.1104/pp.104.054957 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fiehn O, Wohlgemuth G, Scholz M et al (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53:691–704. doi:10.1111/j.1365-313X.2007.03387.x CrossRefPubMedGoogle Scholar
  19. Forrest SI, Verma DPS, Dhindsa RS (1991) Starch content and activities of starch-metabolizing enzymes in effective and ineffective root nodules of soybean. Can J Bot 69:697–701. doi:10.1139/b91-094 CrossRefGoogle Scholar
  20. Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. UW-Madison Libraries Parallel PressGoogle Scholar
  21. Guan C, Ribeiro A, Akkermans ADL et al (1996) Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase. Plant Mol Biol 32:1177–1184CrossRefPubMedGoogle Scholar
  22. Hafeez F, Chaudhary AH, Akkermans ADL (1984) Physiological studies on N2-fixing root nodules of Datisca cannabina L. and Alnus nitida Endl. from Himalaya region in Pakistan. Plant Soil 78:129–146CrossRefGoogle Scholar
  23. Hammad Y, Nalin R, Marechal J et al (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205. doi:10.1023/a:1024971417777 CrossRefGoogle Scholar
  24. Harriott OT, Khairallah L, Benson DR (1991) Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain CpI1. J Bacteriol 173:2061–2067CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jacobsen-Lyon K, Jensen EO, Jorgensen JE et al (1995) Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kint G, Fierro C, Marchal K et al (2010) Integration of “omics” data: does it lead to new insights into host-microbe interactions? Future Microbiol 5:313–328. doi:10.2217/fmb.10.1 CrossRefPubMedGoogle Scholar
  27. Laplaze L, Gherbi H, Frutz T et al (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol 121:113–122CrossRefPubMedPubMedCentralGoogle Scholar
  28. Laplaze L, Svistoonoff S, Santi C et al (2008) Molecular biology of actinorhizal symbioses. In: Newton WE, Pawlowski K (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Netherlands, pp 235–259CrossRefGoogle Scholar
  29. Leaf G, Gardner IC, Bond G (1958) Observations on the composition and metabolism of the nitrogen-fixing root nodules of Alnus. J Exp Bot 9:320–331. doi:10.1093/jxb/9.3.320 CrossRefGoogle Scholar
  30. Lee YJ, Perdian DC, Song Z et al (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70:81–95. doi:10.1111/j.1365-313X.2012.04899.x CrossRefPubMedGoogle Scholar
  31. Lundberg P, Lundquist PO (2004) Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Planta 219:661–672. doi:10.1007/s00425-004-1271-0 CrossRefPubMedGoogle Scholar
  32. Lundquist PO, Huss-Danell K (1991) Nitrogenase activity and amounts of nitrogenase proteins in a Frankia-Alnus incana symbiosis subjected to darkness. Plant Physiol 95:808–813CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nappi AJ, Vass E (1998) Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols. Biochim Biophys Acta Gen Subj 1425:159–167. doi:10.1016/S0304-4165(98)00062-2 CrossRefGoogle Scholar
  34. Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389. doi:10.1146/ CrossRefGoogle Scholar
  35. Normand P, Lapierre P, Tisa LS et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15. doi:10.1101/gr.5798407 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ogata S, Takeuchi M, Teradaira S et al (2014) Radical scavenging activities of niacin-related compounds. Biosci Biotechnol Biochem 66:641–645. doi:10.1271/bbb.66.641 CrossRefGoogle Scholar
  37. Parker D, Beckmann M, Zubair H et al (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59:723–737. doi:10.1111/j.1365-313X.2009.03912.x CrossRefPubMedGoogle Scholar
  38. Perrine-Walker F, Doumas P, Lucas M et al (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380. doi:10.1104/pp.110.163394 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rasmussen S, Parsons AJ, Jones CS (2012) Metabolomics of forage plants: a review. Ann Bot 110:1281–1290. doi:10.1093/aob/mcs023 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18:207–217. doi:10.1007/s007260050018 CrossRefPubMedGoogle Scholar
  41. Ricoult C, Echeverria LO, Cliquet J-B, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J Exp Bot 57:3079–3089. doi:10.1093/jxb/erl069 CrossRefPubMedGoogle Scholar
  42. Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci U S A 108(Suppl):10800–10807. doi:10.1073/pnas.1100304108 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schubert KR, Coker GT, Firestone RB (1981) Ammonia assimilation in Alnus glutinosa and glycine max: short-term studies using [13N]ammonium. Plant Physiol 67:662–665. doi:10.1104/pp.67.4.662 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schubert M, Koteyeva NK, Zdyb A et al (2013) Lignification of cell walls of infected cells in Casuarina glauca nodules that depend on symplastic sugar supply is accompanied by reduction of plasmodesmata number and narrowing of plasmodesmata. Physiol Plant 147:524–540. doi:10.1111/j.1399-3054.2012.01685.x CrossRefPubMedGoogle Scholar
  45. Sellstedt A, Atkins CA (1991) Composition of amino compounds transported in xylem of Casuarina sp. J Exp Bot 42:1493–1498. doi:10.1093/jxb/42.12.1493 CrossRefGoogle Scholar
  46. Silvester WB, Harris SL (1989) Nodule structure and nitrogenase activity of Coriaria arborea in response to varying pO2. Plant Soil 118:97–109. doi:10.1007/BF02232794 CrossRefGoogle Scholar
  47. Silvester WB, Berg RH, Schwintzer CR, Tjepkema JD (2008) Oxygen responses, hemoglobin, and the structure and function of vesicles. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer Netherlands, Dordrecht, pp 105–146CrossRefGoogle Scholar
  48. Stacey G, Libault M, Brechenmacher L et al (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121. doi:10.1016/j.pbi.2006.01.005 CrossRefPubMedGoogle Scholar
  49. Swensen S, Benson DR (2008) Evolution of actinorhizal host plants and Frankia endosymbionts. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, DordrechtGoogle Scholar
  50. Tai A, Sawano T, Ito H (2014) Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci Biotechnol Biochem 76:314–318. doi:10.1271/bbb.110700 CrossRefGoogle Scholar
  51. Tani C, Sasakawa H (2006) Proline accumulates in Casuarina equisetifolia seedlings under salt stress. Soil Sci Plant Nutr 52:21–25. doi:10.1111/j.1747-0765.2006.00005.x CrossRefGoogle Scholar
  52. Tjepkema JD (1979) Oxygen relations in leguminous and actinorhizal nodules. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University Press, Corvallis, pp 175–186Google Scholar
  53. Tjepkema JD, Murry MA (1989) Respiration and nitrogenase activity in nodules of Casuarina cunninghamiana and cultures of Frankia sp. HFP020203: Effects of temperature and partial pressure of O2. Plant Soil 118:111–118. doi:10.1007/BF02232795 CrossRefGoogle Scholar
  54. Tonin GS, Wheeler CT, Crozier A (1990) Effect of nitrogen nutrition on amino acid composition of xylem sap and stem wood in Alnus glutinosa. Physiol Plant 79:506–511. doi:10.1111/j.1399-3054.1990.tb02110.x CrossRefGoogle Scholar
  55. Torrey JG (1976) Initiation and development of root nodules of Casuarina (Casuarinaceae). Am J Bot 63:335–344CrossRefGoogle Scholar
  56. Torrey JG, Callaham D (1979) Early nodule development in Myrica gale. Bot Gaz 140:S10–S15CrossRefGoogle Scholar
  57. Uritani I, Asahi T (1980) Respiration and related metabolic activity in wounded and infected tissues. In: Davies DD (ed) Metabolism and respiration: the biochemistry of plants. Academic, New York, pp 463–485CrossRefGoogle Scholar
  58. Valverde C, Huss-Danell K, Dilworth MJ et al (2008) Carbon and nitrogen metabolism In actinorhizal nodules. In: Newton WE, Pawlowski K (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Netherlands, pp 167–198CrossRefGoogle Scholar
  59. Virtanen AI, Miettinen JK (1952) Free amino-acids in the leaves, roots and root nodules of the alder (Alnus). Nature 170:283–284CrossRefPubMedGoogle Scholar
  60. Walsh KB, Ng BH, Chandler GE (1984) Effects of nitrogen nutrition on xylem sap composition of Casuarinaceae. Plant Soil 81:291–293. doi:10.1007/BF02197162 CrossRefGoogle Scholar
  61. Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231. doi:10.1146/annurev.arplant.52.1.211 CrossRefPubMedGoogle Scholar
  62. Wheeler CT, Bond G (1970) The amino acids of non-legume root nodules. Phytochemistry 9:705–708. doi:10.1016/S0031-9422(00)85168-7 CrossRefGoogle Scholar
  63. Ye H, Gemperline E, Venkateshwaran M et al (2013) MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. Plant J 75:130–145. doi:10.1111/tpj.12191 CrossRefPubMedGoogle Scholar
  64. Yen G-C, Kao H-H (2014) Antioxidative effect of biogenic amine on the peroxidation of linoleic acid. Biosci Biotechnol Biochem 57:115–116. doi:10.1271/bbb.57.115 CrossRefGoogle Scholar
  65. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260. doi:10.1021/jf030117h CrossRefPubMedGoogle Scholar
  66. Zeng S, Tjepkema JD, Berg RH (1989) Gas diffusion pathway in nodules of Casuarina cunninghamiana. Plant Soil 118:119–123. doi:10.1007/BF02232796 CrossRefGoogle Scholar
  67. Zhang X, Benson DR (1992) Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261. doi:10.1007/BF00245241 CrossRefGoogle Scholar
  68. Zhang N, Venkateshwaran M, Boersma M et al (2012) Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume-rhizobia symbiosis. FEBS Lett 586:3150–3158. doi:10.1016/j.febslet.2012.06.046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Biology DepartmentCharleston Southern UniversityCharlestonUSA

Personalised recommendations