Skip to main content
Log in

A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are components of coastal dune ecosystems around the globe where they provide a range of benefits to plants. The diversity and structure of AMF communities within these ecosystems, however, are poorly known. This study presents the first report of an AMF community in a New Zealand dune. Root samples were collected from the grass Spinifex sericeus R. Br., which dominates dunes of the North Island of New Zealand, along a 90 m transect at Anawhata Beach. Spores were also collected from here. The AMF community within the roots was surveyed using 454 sequencing of the SSU gene region. Spores were identified by their morphology, and sequenced. The 22 operational taxonomic units recognised following the high throughput sequencing formed a phylogenetically diverse community, including at least 7 genera across the Glomerales and Diversisporales, with an additional genus detected by the spore investigation. Some root and spore derived sequences generated close BLAST matches to AMF from distant countries while others represent previously unknown biodiversity. Spore morphology also suggests undescribed AMF are present. High diversity was found within the genera Rhizophagus and Racocetra, and within a clade with no matches to a described genus. Spatial heterogeneity was observed, with taxonomic composition changing over distances of only 30 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alguacil MM, Torres MP, Torrecillas E, Díaz G, Roldán A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Alkan N, Gadkar V, Yarden O, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microbiol 72:4192–4199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 1-12

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Bergin D (2011) Spinifex Kowhangatara. Dune Restoration Trust of New Zealand. http://www.dunestrust.org.nz/uploads/7.1%20Spinifex%20Ecology%202011.pdf. Accessed 11 December 2014

  • Berry D, Mahfoudh KB, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 77:7846–7849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biomatters (2011) Geneious v7.0.6 http://www.geneious.com

  • Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. Scientific Report, New Zealand Soil Bureau, Wellington, New Zealand

    Google Scholar 

  • Błaszkowski J, Kovács GM, Balázs T (2009) Glomus perpusillum, a new arbuscular mycorrhizal fungus. Mycologia 101:247–255

    Article  PubMed  Google Scholar 

  • Błaszkowski J, Czerniawska B (2011) Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of bornholm (Denmark). Acta Soc Bot Pol 80:63–76

    Article  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman, FD, Costello EK... Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938. doi:10.1371/journal.pone.0041938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A... Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • de Lange PJ, Rolfe JR, Champion PD, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Norton DA, Hitchmough, RA (2013) Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington

  • de Novais CB, Borges WL, Jesus ED, Saggin OJ, Siqueira JO (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86

    Article  Google Scholar 

  • de Rooij-van der Goes PCEM, van der Putten WH, van Dijk C (1995) Analysis of nematodes and soil borne fungi from Ammophila arenaria (marram grass) in Dutch coastal foredunes by multivariate techniques. Eur J Plant Pathol 101:149–162

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Article  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201-202:42–51

    Article  CAS  PubMed  Google Scholar 

  • Friese CF, Koske RE (1991) The spatial dispersion of spores of vesicular-arbuscular mycorrhizal fungi in a sand dune: microscale patterns associated with the root architecture of American beachgrass. Mycol Res 95:952–957

    Article  Google Scholar 

  • Greipsson S, El-Mayas H (2000) Arbuscular mycorrhizae of Leymus arenarius on coastal sands and reclamation sites in Iceland and response to inoculation. Restor Ecol 8:144–150

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hamill PF, Ballance PF (1985) Heavy mineral rich beach sands of the Waitakere coast, Auckland, New Zealand. N Z J Geol Geophys 28:503–511

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hart M, Aleklett K, Chagnon P-L, Egan C, Ghignone S, Helgason T, Lekberg Y, Öpik M, Pickles BJ, Waller L (2015) Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytol 207:235–247

    Article  PubMed  Google Scholar 

  • Hazard C, Gosling P, Van Der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J Arid Environ 21:165–191

    Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Hilton M, Macauley U, Henderson R (2000) Inventory of New Zealand's active dunelands. Science for Conservation, Department of Conservation, Wellington

    Google Scholar 

  • Hilton MJ (2006) The loss of New Zealand's active dunes and the spread of marram grass (Ammophila arenaria). N Z Geogr 62:105–120

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S... Drummond A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed Central  PubMed  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN, Corkidi L, Sigüenza C, Rincón E (2004) Arbuscular mycorrhizas in coastal dunes. In: Martínez ML, Psuty N (eds) Coastal Dunes, vol 171. Springer, Berlin Heidelberg, pp. 173–187

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kurtboke DI, Bellgard SE (2011) Occurence of actinomycetes and mycorrhizae associated with natural and reconstructed sand dune vegetation zones disturbed by previous sand-mining operations on Australia's Fraser Island. In: Murphy JA (ed) Sand dunes. Nova Science Publishers, New York, pp. 95–115

    Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendahl S (2012) 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D... Huang, S (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet E1004078

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers - a user's guide. New Phytol 199:288–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Little LR, Maun MA (1996) The 'Ammophila problem' revisited: a role for mycorrhizal fungi. J Ecol 84:1–7

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695. doi:10.1371/journal.pone.0036695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallett K, Orchard AE (2002) Flora of Australia, Poaceae 1: introduction and atlas vol 43. ABRS/CSIRO, Melbourne

    Google Scholar 

  • Martinez ML, Hesp PA, Gallego-Fernandez JB (2013) Coastal dunes: human impact and need for restoration. In: Martinez LM, Gallego-Fernandez JB, Juan B, Hesp PA (eds) Restoration of coastal dunes. Springer-Verlag, Berlin, pp. 1–16

    Chapter  Google Scholar 

  • Maun MA (2004) Burial of plants as a selective force in sand dunes. In: Martínez ML, Psuty N (eds) Coastal dunes vol 171. Springer, Berlin Heidelberg, pp. 119–135

    Google Scholar 

  • Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, Oxford

    Google Scholar 

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytol 138:117–129

    Article  Google Scholar 

  • Miller E, Paul T (2007) Measuring success: guidelines for the management of sand dune revegetation programmes. Coastal dune vegetation network technical bulletin no.6. New Zealand Forest Research Institute Limited. Rotorua, New Zealand

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Paper presented at the Gateway computing environments workshop, New Orleans

    Book  Google Scholar 

  • Mummey DL, Rillig MC (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol 64:260–270

    Article  CAS  PubMed  Google Scholar 

  • NIWA (2014) CliFlo: NIWA's national climate database on the web http://cliflo.niwa.co.nz. Accessed 13 November 2014

  • Nordstrom KF, Jackson NL (2013) Foredune restoration in urban settings. In: Martinez ML, Gallego-Fernandez JB, Hesp PA, Juan B (eds) Restoration of coastal dunes. Springer-Verlag, Berlin, pp. 17–31

    Chapter  Google Scholar 

  • Omar MB, Bolland L, Heather WA (1979) A permanent mounting medium for fungi. Bull Br Mycol Soc 13:31–32

    Article  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I... Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

  • Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147

    Article  Google Scholar 

  • Rambaut A (2007) FigTree: http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Suchard MA, D Xie, Drummond AJ (2014) Tracer v1.6: http://beast.bio.ed.ac.uk/Tracer

  • Redecker D, Schüßler A, Stockinger H, Stürmer S L, Morton J B, Walker C (2013) An evidence based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

  • Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552

    Article  PubMed  Google Scholar 

  • Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity – are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. http://schuessler.userweb.mwn.de/amphylo/Schuessler&Walker2010_Glomeromycota.pdf. Accessed 13 November 2014

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sýkorová Z, Inceichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  Google Scholar 

  • Sun X, Su Y, Zhang Y, Wu M, Zhang Z, Pei K, Sun L, Wan S, Liang Y (2013) Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chin Sci Bull 58:4109–4119

    Article  CAS  Google Scholar 

  • Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4.1. Sinauer Associates, Sunderland, Massachusetts

  • Tadych M, Błaszkowski J (1999) Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi. Acta Mycol 34:115–123

    Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R... Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varela-Cervero S, Vasar M, Davison J, Barea JM, Öpik M, Azcón-Aguilar C (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ Microbiol 17:2882–2895

    Article  PubMed  Google Scholar 

  • Walker C, Gianinazzi-Pearson V, Marion-Espinasse H (1993) Scutellospora castanea, a newly described arbuscular mycorrhizal species. Cryptogam Mycol 14:279–286

    Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

  • Wehner J, Powell JR, Muller LAH, Caruso T, Veresoglou SD, Hempel S, Rillig MC (2014) Determinants of root-associated fungal communities within asteraceae in a semi-arid grassland. J Ecol 102:425–436

    Article  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt- treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yamato M, Yagame T, Yoshimura Y, Iwase K (2012) Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22:623–630

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Auckland Council for providing a permit to sample at Anawhata, New Zealand. Renee Johansen is supported by a Doctoral Scholarship from the University of Auckland. Acknowledgements also to Soledad Benitez Ponce for help with bioinformatics, Andrii Gryganskyi and Maj Padamsee for help with phylogenetics and Rytas Vilgalys for valuable feedback on the manuscript. Johnston and Park were supported through the Landcare Research Systematics Portfolio, with Core funding from the Science and Innovation Group of the New Zealand Ministry of Business, Innovation and Employment. The authors also wish to thank the anonymous reviewers for helpful suggestions which have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee B. Johansen.

Electronic supplementary material

13199_2015_355_MOESM1_ESM.pdf

Online Resource 1 Table showing spore morphotype names, Fig. 3 reference, genus (and Fig. 2 name) indicated by the SSU sequence and ENA accession number for spores recovered from a dune at Anawhata, New Zealand. (PDF 93 kb)

13199_2015_355_MOESM2_ESM.pdf

Online Resource 2 Table showing the contigs and OTUs representing arbuscular mycorrhizal fungi derived from sequences generated by pyrosequencing DNA extracted from Spinifex sericeus roots collected from a dune at Anawhata, New Zealand with the number of sequences in each contig (derived from combining two matching operational taxonomic units or OTUs) and uncombined OTU (NS31 OTUs from forward reads, AML2 OTUs from reverse reads) by sample. The total number of contigs and OTUs per sample, and the relative frequency of these across all samples combined, is also shown, along with the ENA accession numbers for each OTU. (PDF 197 kb)

13199_2015_355_MOESM3_ESM.pdf

Online Resource 3 Table showing BLAST matches from GenBank, where at least 80 % continuous query cover could be obtained, for operational taxonomic units (OTUs) which do not represent arbuscular mycorrhizal fungi. Samples which generated these came from the roots of Spinifex sericeus plants growing along a dune at Anawhata, New Zealand. The identity result for the match, as shown on GenBank, is provided, as well as the phylum of the match. The number of sequences per OTU by sample, and total number of OTUs per sample is also given. (PDF 277 kb)

13199_2015_355_MOESM4_ESM.pdf

Online Resource 4 Table showing published BLAST matches from GenBank for all contigs (consisting of combined matching operational taxonomic units or OTUs), uncombined OTUs (NS31 OTUs from forward reads, AML2 OTUs from reverse reads), and spore sequences representing the arbuscular mycorrhizal fungal community sampled along a dune at Anawhata, New Zealand. The closest match to a GenBank record from a published study is provided, as well as the identity result, and the accepted taxonomic name (to the level of genus) based on the Fig. 2 phylogeny. (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansen, R.B., Vestberg, M., Burns, B.R. et al. A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis 66, 111–121 (2015). https://doi.org/10.1007/s13199-015-0355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0355-x

Keywords

Navigation