, Volume 67, Issue 1–3, pp 79–90 | Cite as

Characterization of surface motility in Sinorhizobium meliloti: regulation and role in symbiosis

  • Lydia Bernabéu-Roda
  • Nieves Calatrava-Morales
  • Virginia Cuéllar
  • María J. Soto


Sinorhizobium meliloti can exhibit diverse modes of surface translocation whose manifestation depends on the strain. The mechanisms involved and the role played by the different modes of surface motility in the establishment of symbiosis are largely unknown. In this work, we have characterized the surface motility shown by two S. meliloti reference strains (Rm1021 and GR4) under more permissive conditions for surface spreading and analyzed the symbiotic properties of two flagella-less S. meliloti mutants with different behavior on surfaces. The use of Noble agar in semisolid minimal medium induces surface motility in GR4, a strain described so far as non-motile on surfaces. The motility exhibited by GR4 is swarming as revealed by the non-motile phenotype of the flagella-less flaAB mutant. Intriguingly, a flgK mutation which also abolishes flagella production, triggers surface translocation in GR4 through an as yet unknown mechanism. In contrast to GR4, Rm1021 moves over surfaces using mostly a flagella-independent motility which is highly reliant on siderophore rhizobactin 1021 production. Surprisingly, this motility is absent in a flagella-less flgE mutant. In addition, we found that fadD loss-of-function, known to promote surface motility in S. meliloti, exerts different effects on the two reference strains: while fadD inactivation promotes a flagella-independent type of motility in GR4, the same mutation interferes with the surface translocation exhibited by the Rm1021 flaAB mutant. The symbiotic phenotypes shown by GR4flaAB and GR4flgK, non-flagellated mutants with opposite surface motility behavior, demonstrate that flagella-dependent motility positively influences competitiveness for nodule occupation, but is not crucial for optimal infectivity.


Rhizobium Swarming Flagella Nodulation Infectivity Competitiveness 



This work was supported by grants BIO2010-18005 and BIO2013-42801-P from the Ministerio de Economía y Competitividad (Spain), the Excellence Project P08-CVI-03541 from the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and FEDER funds. We are grateful to J. Nogales for her participation in the construction of GR4flaAB. LBR was supported by a Junta de Andalucía contract and NCM by grant FPU12/01006 from the Ministerio de Educación, Cultura y Deporte (Spain).


  1. Allison C, Lai HC, Hughes C (1992) Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6:1583–1591CrossRefPubMedGoogle Scholar
  2. Amaya-Gómez CV (2013) Transcriptomic approach for the identification of genes and signals playing a role in swarming motility of Sinorhizobium meliloti: connection with biofilm formation and symbiosis. Doctoral Thesis, University of GranadaGoogle Scholar
  3. Amaya-Gómez CV, Hirsch AM, Soto MJ (2015) Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiol 15:8. doi: 10.1186/s12866-015-0390-z CrossRefGoogle Scholar
  4. Ames P, Bergman K (1981) Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148:728–908PubMedCentralPubMedGoogle Scholar
  5. Bahlawane C, McIntosh M, Krol E, Becker A (2008) Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498–1509. doi: 10.1094/MPMI-21-11-1498 CrossRefPubMedGoogle Scholar
  6. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198PubMedGoogle Scholar
  7. Bernabéu-Roda L (2014) Bases moleculares que gobiernan la movilidad swarming en Sinorhizobium meliloti: conexión con formación de biopelículas y establecimiento de simbiosis. Doctoral Thesis, University of GranadaGoogle Scholar
  8. Burch AY, Shimada BK, Mullin SW, Dunlap CA, Bowman MJ, Lindow SE (2012) Pseudomonas syringae coordinates production of a motility-enabling surfactant with flagellar assembly. J Bacteriol 194:1287–1298. doi: 10.1128/JB.06058-11 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Caetano-Anollés G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169PubMedCentralPubMedGoogle Scholar
  10. Caetano-Anollés G, Wrobel-Boerner E, Bauer WD (1992) Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol 98:1181–1189PubMedCentralCrossRefPubMedGoogle Scholar
  11. Casadesús J, Olivares J (1979) Rough and fine linkage mapping of the Rhizobium meliloti chromosome. Mol Gen Genet 174:203–209CrossRefPubMedGoogle Scholar
  12. Covelli JM, Althabegoiti MJ, López MF, Lodeiro AR (2013) Swarming motility in Bradyrhizobium japonicum. Res Microbiol 164:136–144CrossRefPubMedGoogle Scholar
  13. Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103:14965–14970PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dilanji GE, Teplitski M, Hagen SJ (2014) Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface. Proc Biol Sci 281:20132575. doi: 10.1098/rspb.2013.2575 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Duan Q, Zhou M, Zhu L, Zhu G (2013) Flagella and bacterial pathogenicity. J Basic Microbiol 53:1–8. doi: 10.1002/jobm.201100335 CrossRefPubMedGoogle Scholar
  16. Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124PubMedCentralPubMedGoogle Scholar
  17. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206CrossRefPubMedGoogle Scholar
  18. Gao M, Coggin A, Yagnik K, Teplitski M (2012) Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS One 7, e42611. doi: 10.1371/journal.pone.0042611 PubMedCentralCrossRefPubMedGoogle Scholar
  19. García-Rodríguez FM, Toro N (2000) Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. Mol Plant Microbe Interact 13:583–591CrossRefPubMedGoogle Scholar
  20. Gurich N, González JE (2009) Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol 191:4372–4382. doi: 10.1128/JB.00376-09 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273. doi: 10.1128/JB.00376-09 CrossRefPubMedGoogle Scholar
  22. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503PubMedCentralPubMedGoogle Scholar
  23. Iyoda S, Kamidoi T, Hirose K, Kutsukake K, Watanabe H (2001) A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog 30:81–90CrossRefPubMedGoogle Scholar
  24. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644. doi: 10.1038/nrmicro2405 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Meade HM, Signer ER (1977) Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci U S A 74:2076–2078PubMedCentralCrossRefPubMedGoogle Scholar
  26. Mellor HY, Glenn AR, Arwas R (1987) Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Arch Microbiol 148:34–39CrossRefGoogle Scholar
  27. Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63:348–362CrossRefPubMedGoogle Scholar
  28. Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ (2010) Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics 11:157. doi: 10.1186/1471-2164-11-157 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ (2012) ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol 194:2027–2035. doi: 10.1128/JB.06524-11 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi: 10.1146/annurev.arplant.59.032607.092839 CrossRefPubMedGoogle Scholar
  31. Olivares J, Casadesús J, Bedmar EJ (1980) Method for testing degree of infectivity of Rhizobium meliloti strains. Appl Environ Microbiol 39:967–970PubMedCentralPubMedGoogle Scholar
  32. Pech-Canul A, Nogales J, Miranda-Molina A, Alvarez L, Geiger O, Soto MJ, Lopez-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304. doi: 10.1128/JB.05450-11 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Ryan RP, Dow JM (2011) Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol 19:145–152. doi: 10.1016/j.tim.2010.12.003 CrossRefPubMedGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory PressGoogle Scholar
  35. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRefPubMedGoogle Scholar
  36. Scharf B, Schmitt R (2002) Sensory transduction to the flagellar motor of Sinorhizobium meliloti. J Mol Microbiol Biotechnol 4:183–186PubMedGoogle Scholar
  37. Scharf B, Schuster-Wolff-Buhring H, Rachel R, Schmitt R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. J Bacteriol 183:5334–5342PubMedCentralCrossRefPubMedGoogle Scholar
  38. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram- negative bacteria. Nat Biotechnol 1:784–791. doi: 10.1038/nbt1183-784 CrossRefGoogle Scholar
  39. Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295. doi: 10.1016/S0065-2164(08)01008-3 CrossRefPubMedGoogle Scholar
  40. Soby S, Bergman K (1983) Motility and chemotaxis of Rhizobium meliloti in soil. Appl Environ Microbiol 46:995–998PubMedCentralPubMedGoogle Scholar
  41. Soto MJ, Fernández-Pascual M, Sanjuán J, Olivares J (2002) A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol 43:371–382CrossRefPubMedGoogle Scholar
  42. Süle S, Cursino L, Zheng D, Hoch HC, Burr TJ (2009) Surface motility and associated surfactant production in Agrobacterium vitis. Lett Appl Microbiol 49:596–601CrossRefPubMedGoogle Scholar
  43. Tambalo DD, Yost CK, Hynes MF (2010) Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 307:165–174CrossRefPubMedGoogle Scholar
  44. Winans SC (2011) A new family of quorum sensing pheromones synthesized using S-adenosylmethionine and Acyl-CoAs. Mol Microbiol 79:1403–1406. doi: 10.1111/j.1365-2958.2011.07551.x CrossRefPubMedGoogle Scholar
  45. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefPubMedGoogle Scholar
  46. Yost CK, Rochepeau P, Hynes MF (1998) Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology 144:1945–1956CrossRefPubMedGoogle Scholar
  47. Young GM, Schmiel DH, Miller VL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96:6456–6461PubMedCentralCrossRefPubMedGoogle Scholar
  48. Zheng H, Mao Y, Teng J, Zhu Q, Ling J, Zhong Z (2015) Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: Study of an flgE mutant. Curr Microbiol. doi: 10.1007/s00284-014-0701-x Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lydia Bernabéu-Roda
    • 1
  • Nieves Calatrava-Morales
    • 1
  • Virginia Cuéllar
    • 1
  • María J. Soto
    • 1
  1. 1.Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain

Personalised recommendations