Skip to main content

Validation of candidate reference genes for qRT-PCR studies in symbiotic and non-symbiotic Casuarina glauca Sieb. ex Spreng. under salinity conditions

Abstract

Casuarina glauca is a model actinorhizal plant species that establishes N2-fixing symbiosis with Frankia bacteria. This plant is highly resilient to extreme environments, being commonly found in saline zones. Gene expression studies by quantitative real-time polymerase chain reaction (qRT-PCR) constitute a powerful tool to analyze the mechanisms underlying plant stress-tolerance. One of the crucial steps of this technique is the selection and validation of reference genes to produce accurate data. In this work we report on the evaluation of a set of ten reference genes to be used in qRT-PCR studies in C. glauca grown under high salt concentrations, following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Five independent methods (geNorm, NormFinder, BestKeeper, Coefficient of Variance, and ReFinder) were used to evaluate gene stability. According to the results, the calibration of qRT-PCR reactions with the most versus the least stable reference genes produced different expression patterns of C. glauca stress responsive genes (CgCS and CgAPX). The same was observed when data was normalized with one, two or three stable reference genes. These study constitutes a baseline for accurate qRT-PCR analysis in C. glauca exposed to high salt concentrations which should include the use of at least two stable reference genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    CAS  Article  PubMed  Google Scholar 

  • Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389–395

    CAS  Article  PubMed  Google Scholar 

  • Batista-Santos P, Duro N, Rodrigues AP, Semedo JN, Alves P, da Costa M, Graça I, Pais IP, Scotti-Campos P, Lidon FC, Leitão AE, Pawlowski K, Ribeiro-Barros AI, Ramalho JC (2015) Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem, Accepted

  • Bennett J, Hondred D, Register J (2015) Keeping qRT-PCR rigorous and biologically relevant. Plant Cell Rep 34:1–3

    CAS  Article  PubMed  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bustin SA, Mueller R (2005) Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci 109:365–379

    CAS  Article  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    CAS  Article  PubMed  Google Scholar 

  • Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FSB, Olsvik PA, Penning LC, Toegel S (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    PubMed Central  Article  PubMed  Google Scholar 

  • Cavalcanti J, Esteves-Ferreira A, Quinhones C, Pereira-Lima I, Nunes-Nesi A, Fernie A, Araújo W (2014) Evolution and functional implications of the Tricarboxylic Acid Cycle as revealed by phylogenetic analysis. Genome Biol Evol 6:2830–2848

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa S, Ribeiro C, Lazzarotto F, Margis-Pinheiro M (2012) Plant Responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S, Gherbi H, Hocher V, Diouf D, Laplaze L, Champion A (2014) Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biol 14:342

    PubMed Central  Article  PubMed  Google Scholar 

  • Diem HG, Dommergues YD (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 317–342

    Google Scholar 

  • Fortunato A, Santos P, Graça I, Gouveia MM, Martins SM, Ricardo CP, Pawlowski K, Ribeiro A (2007) Isolation and characterization of cgchi3, a nodule-specific gene from Casuarina glauca encoding a class III chitinase. Physiol Plant 130:418–426

    CAS  Article  Google Scholar 

  • Fu W, Xie W, Zhang Z, Wang S, Wu Q, Liu Y, Zhou X, Zhou X, Zhang Y (2013) Exploring valid reference genes for quantitative real- time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int J Biol Sci 9:792–802

    PubMed Central  Article  PubMed  Google Scholar 

  • Fujii Y, Kitaura K, Matsutani T, Shirai K, Suzuki S, Takasaki T, Kumagai K, Kametani Y, Shiina T, Takabayashi S, Katoh H, Hamada Y, Kurane I, Suzuki R (2013) Immune-related gene expression profile in laboratory common marmosets assessed by an accurate quantitative real-time PCR using selected reference genes. PLoS ONE 8, e56296

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Goulao LF, Fortunato AS, Ramalho JC (2012) Selection of reference genes for normalizing quantitative real-time PCR gene expression data with multiple variables in Coffea spp. Plant Mol Biol Report 30:741–759

    CAS  Article  Google Scholar 

  • Guo J, Ling H, Wu Q, Xu L, Que Y (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre J-F, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Wuytswinkel OV (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    CAS  Article  PubMed  Google Scholar 

  • He XH, Critchley C (2008) Frankia nodulation, mycorrhization and interactions between Frankia and mycorrhizal fungi in casuarina plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer-Verlap GmbH, Germany, pp 767–781

    Chapter  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Boqusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Hoenemann C, Hohe A (2011) Selection of reference genes for normalization of quantitative real-time PCR in cell cultures of Cyclamen persicum. Electron J Biotechnol 14:1–8

    Google Scholar 

  • Kandu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658

    Article  Google Scholar 

  • Klie M, Debener T (2011) Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Res Notes 4:518–526

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ling D, Salvaterra PM (2011) Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS ONE 6, e17762

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    CAS  Article  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  Article  PubMed  Google Scholar 

  • Mehta R, Birerdinc A, Hossain N, Afendy A, Chandhoke V, Younossi Z, Baranova A (2010) Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. BMC Mol Biol 11:39–48

    PubMed Central  Article  PubMed  Google Scholar 

  • Najafpanah MJ, Sadeghi M, Bakhtiarizadeh MR (2013) Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of Capra hircus. PLoS ONE 8, e83041

    PubMed Central  Article  PubMed  Google Scholar 

  • Olias P, Adam I, Meyer A, Scharff C, Gruber AD (2014) Reference genes for quantitative gene expression studies in multiple avian species. PLoS ONE 9, e99678

    PubMed Central  Article  PubMed  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979

    Article  PubMed  Google Scholar 

  • Perrin-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Péret B, King JR, Verdeil JL, Hocher V, Franche C, Bennett MJ, Tisa LS, Laplaze L (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    Article  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    CAS  Article  PubMed  Google Scholar 

  • Pihur V, Datta S, Datta S (2009) RankAggreg, an R package for weighted rank aggregation. BMC Bioinf 10:62

    Article  Google Scholar 

  • RefFinder (2014) http://www.leonxie.com/referencegene.php. Accessed 1 October 2014

  • Remans T, Keunen E, Jan Bex G, Smeets K, Vangronsveld J, Cuypers A (2014) Reliable gene expression by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy. Plant Cell 26:3829–3837

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Santos P, Fortunato A, Graça I, Martins SM, Gouveia MM, Auguy F, Bogusz D, Ricardo CPP, Pawlowski K, Ribeiro A (2010) Characterization of four defense-related genes up-regulated in root nodules of Casuarina glauca. Symbiosis 50:27–35

    CAS  Article  Google Scholar 

  • Sekmen A, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol Plant 131:399–411

    CAS  Article  PubMed  Google Scholar 

  • Svistoonoff S, Gherbi H, Nambiar-Veetil M, Zhong C, Michalak Z, Laplaze L, Vaissayre V, Auguy F, Hocher V, Doumas P, Bonneau J, Bogusz D, Franche C (2010) Contribuition of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50:3–11

    CAS  Article  Google Scholar 

  • Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034.1–0034.11

    Article  Google Scholar 

  • Vanhauwaert S, Van Peer G, Rihani A, Janssens E, Rondou P, Lefever S, De Paepe A, Coucke P, Speleman F, Vandesompele J, Willaert A (2014) Expressed repeat elements improve RT-qPCR normalization across a wide range of zebrafish gene expression studies. PLoS ONE 9, e109091

    PubMed Central  Article  PubMed  Google Scholar 

  • Vijayan K (2009) Approaches for enhancing salt tolerance in mulberry (Morus L)—a review. Plant Omics J 2:41–59

    CAS  Google Scholar 

  • Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H (2015) Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics 16:169

    PubMed Central  Article  PubMed  Google Scholar 

  • Xiao X, Ma J, Wang J, Wu X, Li P, Yao Y (2015) Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Plant Sci 5:788

    Google Scholar 

  • Zhong C, Zhang Y (2003) Introduction and management of Casuarina tree species in China. Chin For Sci Technol 17:3–5

    Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Article  Google Scholar 

  • Zhong C, Mansour S, Nambiar-Veetil M, Bogusz D, Franche C (2013) Casuarina glauca: a model tree for basic research in actinorhizal symbiosis. J Biosci 38:815–823

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia under the scope of the project PTDC/AGR-FOR/4218/2012 and grant SFRH/BPD/78619/2011 (P. Batista-Santos). The authors acknowledge Paula Alves for lab assistance.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

MdC performed the experimental work and produced the manuscript draft; ND contributed to the experimental work and to the manuscript draft; PB-S contributed to the experimental work; JCR contributed to the study design; AR-B designed and coordinated the experimental work and was involved in drafting the manuscript. MdC, AR-B and JCR gave thorough review and final approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Ribeiro-Barros.

Additional information

Key message

Folowing the MIQE guidelines, we have defined the most appropriate number and classes of reference genes for qRT-PCR studies in symbiotic and non-symbiotic C. glauca exposed to high salinity conditions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1
figure 9

Experimental outline. (GIF 387 kb)

Online Resource 3
figure 10

Melting Curve from qRT-PCR of each Reference Genes. a) Ap47; b) GAPDH; c) Ef-1; d) Elf-4a; e) S24; f) Tubulin; g) Apt; h) Ubiquitin Checklist for MIQE guidelines. (GIF 526 kb)

Online Resource 6
figure 11

Diagram that summarizes the top two genes for qRT-PCR in each tissue analyzed. The roots and branchlets were collected from NOD− plants, and nodules and branchlets material from symbiotic (NOD+) plants. (GIF 60 kb)

High resolution image (TIFF 2106 kb)

Online Resource 2

Samples used for total assay and intra-group analyses (DOCX 16 kb)

High resolution image (TIFF 1274 kb)

Online Resource 4

qPCR products sequencing results (DOCX 13 kb)

Online Resource 5

Checklist for MIQE guidelines. (XLSX 16 kb)

High resolution image (TIFF 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Costa, M., Duro, N., Batista-Santos, P. et al. Validation of candidate reference genes for qRT-PCR studies in symbiotic and non-symbiotic Casuarina glauca Sieb. ex Spreng. under salinity conditions. Symbiosis 66, 21–35 (2015). https://doi.org/10.1007/s13199-015-0330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0330-6

Keywords

  • Actinorhizal nodules
  • Casuarina glauca
  • Frankia
  • qRT-PCR
  • Reference
  • Salt stress