Advertisement

Symbiosis

, Volume 65, Issue 3, pp 143–155 | Cite as

Multiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes fed on artificial diets

  • Cédric TarayreEmail author
  • Julien Bauwens
  • Christel Mattéotti
  • Catherine Brasseur
  • Catherine Millet
  • Sébastien Massart
  • Jacqueline Destain
  • Micheline Vandenbol
  • Edwin De Pauw
  • Eric Haubruge
  • Frédéric Francis
  • Philippe Thonart
  • Daniel Portetelle
  • Frank Delvigne
Article

Abstract

The purpose of this work was the observation of the differences between the microbial communities living in the gut of the termite Reticulitermes flavipes fed on different diets. The termites were fed on poplar wood (original diet) and artificial diets consisting of crystalline cellulose (with and without lignin), α-cellulose (with and without lignin) and xylan. The termites were then dissected and the protist communities were analyzed through microscopy, leading to the conclusion that protist species are strongly influenced by diets. BIOLOG ECO Microplates® were used to assess the metabolic properties of the different types of consortia, highlighting strong differences on the basis of principal component analysis and calculation of similarity rates. The microorganisms were cultivated in liquid media corresponding to the artificial diets before being characterized through a metagenetic analysis of gut microbiota (16S ribosomal DNA). This analysis identified several phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Nitrospirae, OP9, Planctomycetes, Proteobacteria, Spirochaetes, TM6, Tenericutes, Verrucomicrobia and WS3. The OTUs were also determined and confirmed the abundance of Proteobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia. It was possible to isolate several strains from the liquid media, and one bacterium and several fungi were found to produce interesting enzymatic activities. The bacterium Chryseobacterium sp. XAvLW produced α-amylase, β-glucosidase, endo-1,4-β-D-glucanase, endo-1,4-β-D-xylanase and filter paper-cellulase, while the fungi Sarocladium kiliense CTGxxyl and Trichoderma virens CTGxAviL generated the same activities added with endo-1,3-β-D-glucanase.

Keywords

BIOLOG Artificial diets 16S rDNA analysis Reticulitermes flavipes 

Notes

Acknowledgments

This work was supported by an ARC contract (Action de Recherche Concertée; agreement Gembloux Agro-Bio Tech no. ARC 08-13/02). We also thank Progenus® for their help.

Supplementary material

13199_2015_328_MOESM1_ESM.pdf (58 kb)
Online Resource 1 (PDF 58 kb)

References

  1. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Austin J, Szalanski A, Scheffrahn R, Messenger M, Dronnet S, Bagnères A-G (2005) Genetic evidence for the synonymy of two reticulitermes species: Reticulitermes flavipes and reticulitermes santonensis. Ann Entomol Soc Am 98:395–401CrossRefGoogle Scholar
  3. Bauwens J, Tarayre C, Brasseur C, Mattéotti C, Destain J, Vandenbol M, Portetelle D, Thonart P, De Pauw E, Haubruge E et al (2012) Influence of lignin in Reticulitermes santonensis: Symbiotic interactions investigated through proteomics. Symbiosis 58:119–125CrossRefGoogle Scholar
  4. Bignell D (2010) Morphology, Physiology, Biochemistry and Functional Design of the Termite Gut: An Evolutionary Wonderland. In: Bignell D, Roisin Y, Lo N (eds) Biology of Termites: a Modern Synthesis. Springer, New YorkGoogle Scholar
  5. Boucias D, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, Scharf M (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocelluloses composition. Mol Ecol 22:1836–1853PubMedCrossRefGoogle Scholar
  6. Cao W, Mahadevan B, Crawford DL, Crawford RL (1993) Characterization of an extracellular azo dye-oxidizing peroxidase from Flavobacterium sp. ATCC 39723. Enzyme Microb Technol 15:810–817CrossRefGoogle Scholar
  7. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chandra M, Kalra A, Sharma P, Sangwan R (2009) Cellulase production by six Trichoderma spp. fermented on medicinal plant processings. J Ind Microbiol Biotechnol 36:605–609PubMedCrossRefGoogle Scholar
  9. Christakopoulos P, Kekos D, Macris B, Claeyssens M, Bhat M (1996) Purification and characterisation of a major xylanase with cellulase and transferase activities from Fusarium oxysporum. Carbohydr Res 289:91–104PubMedCrossRefGoogle Scholar
  10. De Almeida M, Guimaraes V, Bischoff K, Falkoski D, Pereira O, Gonçalves D, de Rezende S (2011) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165:594–610PubMedCrossRefGoogle Scholar
  11. Dhillon A, Khanna S (2000) Production of a thermostable alkali-tolerant xylanase from bacillus circulans AB 16 grown on wheat straw. World J Microbiol Biotechnol 16:325–327CrossRefGoogle Scholar
  12. Dugas J, Zurek L, Paster B, Keddie B, Leadbetter E (2001) Isolation and characterization of a Chryseobacterium strain from the gut of the American cockroach, Periplaneta Americana. Arch Microbiol 175:259–262PubMedCrossRefGoogle Scholar
  13. Fairley D, Boyd D, Sharma N, Allen C, Morgan P, Larkin M (2002) Aerobic metabolism of 4-hydroxybenzoic acid in archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 68:6246–6255PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fisher M, Miller D, Brewster C, Husseneder C, Dickerman A (2007) Diversity of gut bacteria of reticulitermes flavipes as examined by 16S rRNA gene sequencing and amplified rDNA restriction analysis. Curr Microbiol 55:254–259PubMedCrossRefGoogle Scholar
  15. Golden E, Byers L (1794) Methyl glucoside hydrolysis catalyzed by β-glucosidase. Biochim Biophys Acta 2009:1643–1647Google Scholar
  16. Gryta A, Frac M, Oszust K (2014) The application of the biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl Biochem Biotechnol 174:1434–1443PubMedCentralPubMedCrossRefGoogle Scholar
  17. Inoue T, Murashima K, Azuma J, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242PubMedCrossRefGoogle Scholar
  18. Insam H, Goberna M (2004) Use of biolog for the community level physiological profiling (CLPP) of environmental samples. Mol Microb Ecol Man Second Ed 4(01):853–860Google Scholar
  19. Kang Z, Buchenauer H (2000) Ultrastructural and cytochemical studies on cellulose\ xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148:263–275CrossRefGoogle Scholar
  20. Karegoudar T, Kim C-K (2000) Microbial degradation of monohydroxybenzoic acids. J Microbiol 38:53–61Google Scholar
  21. Kasana R, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507PubMedCrossRefGoogle Scholar
  22. Kim D-J, Baek J-M, Uribe P, Kenerley C, Cook D (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384PubMedCrossRefGoogle Scholar
  23. Kuhad R, Singh A (2013) Biotechnology for Environmental Management and Resource Recovery. Springer, DordrechtCrossRefGoogle Scholar
  24. Lee C, Smith M, Kibblewhite-Accinelli R, Williams T, Wagschal K, Robertson G, Wong D (2006) Isolation and characterization of a cold-active xylanase enzyme from flavobacterium sp. Curr Microbiol 52:112–116PubMedCrossRefGoogle Scholar
  25. Lengeler J, Drews G, Schlegel H (2009) Biology of the Prokaryotes. New YorkGoogle Scholar
  26. Odeniyi O, Onilude A, Ayodele M (2012) Characteristics of a β-1,4-D endoglucanase from Trichoderma virens wholly applied in a palm-fruit husk-based diet for poultry layers. Braz J Microbiol 43:1467–1475PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedCrossRefGoogle Scholar
  28. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell D, Roisin Y, Lo N (eds) Biology of Termites: A Modern Synthesis. Springer, New YorkGoogle Scholar
  29. Postgate J (1995) The Outer Reaches of Life. Cambridge University Press, CambridgeGoogle Scholar
  30. Ragauskas A, Williams C, Davison B, Britovsek G, Cairney J, Eckert C, Frederick WJ, Hallett J, Leak D, Liotta C et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  31. Rajagopal S, Rao D, Varma A (1979) Association of fungi in the termite gut. Curr Sci India 48:998–999Google Scholar
  32. Rajagopal S, Rao D, Varma A (1981) Fungi from worker termite gut, Odontotermes obesus (Rambur) from northern India. Nova Hedwigia 34:97–100Google Scholar
  33. Richard P, Hilditch S (2009) D-Galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 82:597–604PubMedCrossRefGoogle Scholar
  34. Ritter S (2008) Lignocellulose: a complex biomaterial. Plant Biochem 86:15Google Scholar
  35. Sethi A, Slack J, Kovaleva E, Buchman G, Scharf M (2013) Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 43:91–101PubMedCrossRefGoogle Scholar
  36. Singh H (2006) Mycoremediation: Fungal Bioremediation. Wiley, United States of AmericaCrossRefGoogle Scholar
  37. Tanaka H, Aoyagi H, Shina S, Dodo Y, Yoshimura T, Nakamura R, Uchiyama H (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917PubMedCrossRefGoogle Scholar
  38. Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot P, Destain J, Vandenbol M, Portetelle D, De Pauw E et al (2014) Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. Environ Sci Pollut Res 22(6):4369–4382CrossRefGoogle Scholar
  39. Tartar A, Wheeler M, Zhou X, Coy M, Boucias D, Scharf M (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 15:2–25Google Scholar
  40. Todaka N, Moriya S, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599PubMedCrossRefGoogle Scholar
  41. Trager W (1934) The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull 1934(66):182–190CrossRefGoogle Scholar
  42. Tsao G (1999) Recent Progress in Bioconversion of Lignocellulosics. New YorkGoogle Scholar
  43. Wanjiru W, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810CrossRefGoogle Scholar
  44. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson T, Stege J, Cayouette M, McHardy A, Djordjevic G, Aboushadi N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  45. Wertz J-L, Bédué O, Mercier J-P (2010) Cellulose Science and TechnologyGoogle Scholar
  46. Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932PubMedCrossRefGoogle Scholar
  47. Zalewska-Sobczak J, Urbanek H (1981) Cellulose and xylan degrading enzymes of Fusarium avenaceum. Arch Microbiol 129:247–250CrossRefGoogle Scholar
  48. Zhou X, Smith J, Oi F, Koehler P, Bennett G, Scharf M (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39PubMedCrossRefGoogle Scholar
  49. Zuccaro A, Summerbell R, Gams W, Schroers H, Mitchell J (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cédric Tarayre
    • 1
    Email author
  • Julien Bauwens
    • 2
  • Christel Mattéotti
    • 3
  • Catherine Brasseur
    • 4
  • Catherine Millet
    • 3
  • Sébastien Massart
    • 5
  • Jacqueline Destain
    • 1
  • Micheline Vandenbol
    • 3
  • Edwin De Pauw
    • 4
  • Eric Haubruge
    • 2
  • Frédéric Francis
    • 2
  • Philippe Thonart
    • 1
  • Daniel Portetelle
    • 3
  • Frank Delvigne
    • 1
  1. 1.Unité de Bio-IndustriesGembloux Agro-Bio Tech, Université de LiègeGemblouxBelgium
  2. 2.Unité d’Entomologie Fonctionnelle et EvolutiveGembloux Agro-Bio Tech, Université de LiègeGemblouxBelgium
  3. 3.Unité de Microbiologie et GénomiqueGembloux Agro-Bio Tech, Université de LiègeGemblouxBelgium
  4. 4.Laboratoire de Spectrométrie de Masse, Faculté des SciencesUniversité de LiègeLiègeBelgium
  5. 5.Laboratoire de Phytopathologie Intégrée et UrbaineGembloux Agro-Bio Tech, Université de LiègeGemblouxBelgium

Personalised recommendations