Skip to main content

Advertisement

Log in

Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions

Symbiosis Aims and scope Submit manuscript

Abstract

To our knowledge, there are no studies on the interactive effects of inoculation with arbuscular mycorrhizal fungi and cytokinin addition to plants under drought stress. We investigated the potential protective effect of arbuscular mycorrhizae on pomegranate plants, combined with exogenous cytokinin addition, under two contrasting soil water availability regimes. Our results showed that exogenous cytokinin addition enhances plant biomass, shoot to root ratio and water content, as well as increasing the anthocyanin content. However, a combination of AM fungal inoculation and cytokinin addition did not result in a synergistic protective effect against water stress. Plants were equally well protected against this stress by cytokinin spraying alone. The improvement of pomegranate growth was due mainly to exogenous cytokinin addition. Photosynthesis was promoted both by mycorrhizal inoculation alone and by exogenous cytokinin addition. The main protection against oxidative stress caused by drought was via enhanced accumulation of anthocyanins when the plants were sprayed with cytokinins. When cytokinins were used, the photosynthesis apparatus was also protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Achard P, Cheng H, De Grawe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ainley WM, McNeil KJ, Hill JW, Lingle WL, Simpson RB, Brenner ML, Nagao RT, Key JL (1993) Regulatable endogenous production of cytokinins up to toxic levels in transgenic plants and plant tissue. Plant Mol Biol 22:13–23

    Article  CAS  PubMed  Google Scholar 

  • Arndt DS, Baringer MO, Johnson MR (2010) State of the climate in 2009. Bull Am Meteorol Soc 91(7):1–224

    Article  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular arbuscular symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Bieto J, Talón M (2000) Citoquininas. In: Fundamentos de Fisiología Vegetal. McGraw-Hill SA Interamericana de España Editorial, España, pp 343–360

  • Baas R, Kuiper D (1989) Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to internal cytokinin concentrations. Physiol Plant 76:211–215

    Article  CAS  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbiosis. J Plant Growth Regul 19(2):144–154

    CAS  PubMed  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  PubMed  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to Abiotic Stresses. In: Buchanan B, Gruissem R, Jones R (eds) Biochemistry and molecular biology of plants. American society of plant physiologists, pp 1158–1203

  • Carpio LA, Davies FT Jr, Arnold MA (2005) Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. Am Soc Horticult Sci 130(1):131–139

    Google Scholar 

  • Castaneda‐Ovando A, Pacheco‐Hernandez MD, Paez‐Hernandez ME, Rodriguez JA, Galan‐Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Capannesi C, Palchetti I, Mascini M, Parenti A (2000) Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem 74(4):553–562

    Article  Google Scholar 

  • Cecotto JA, Taiariol DR, Cáceres S (2007) Colección de frutos tropicales de la EEA INTA Bella Vista. Technical Serie N 21 1–17, ISSN 1515–9299

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70(1):1–9

    Article  CAS  Google Scholar 

  • Clewer AG, Scarisbrick DH (2001) Factorial experiments. In: Wiley J, Ltd S (eds) Practical statistics and experimental design for plant and crop science. The Atrium, Southern Gate, Chicheste, West Sussex England, pp 159–181

    Google Scholar 

  • Close DC, Beadle CL (2003) The ecophysiology of foliar anthocyanin. Bot Rev 69(2):149–161

    Article  Google Scholar 

  • Danae E, Pratt R, Stephen D (2003) Reddening and regreening: The role of anthocyanins in water stressed leaves of a sclerophyllous shrub. ESA Annu Meet

  • Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YI (2012) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34(1):93–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eftekhari M, Alizadeh M, Mashayekhi K, Asghari H, Kamkar B (2010) Integration of arbuscular mycorrhizal fungi to grape vine (Vitis vinifera L.) in nursery stage. J Adv Lab Res Biol 1(1):102–111, ISSN 0976–7614

    Google Scholar 

  • Fuleki T, Francis FJ (1968) Determination of total anthocyanin and degradation index for cranberry juice. J Food Sci 33(1):78–83

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defense against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Strnad M, Sánchez-Díaz M (1996) Root cytokines, acid phosphates and nodule activity in drought-stressed mycorrhizal or nitrogen fixing alfalfa plants. J Exp Bot 47:683–686

    Article  CAS  Google Scholar 

  • Goicoechea N, Dolezal K, Antolin MC, Strnad M, Sánchez-Díaz M (1995) Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J Exp Bot 46:1543–1549

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Hewitt EJ (1952) Sand and water culture methods in the study of plant nutrition. Tech Com Agric Bur 22

  • Hoch WA, Zelding EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hughes NM, Neufeld HS, Burkey KO (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol 168:575–587

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65(2):305–313

    Article  Google Scholar 

  • Khattab MM, Shaban AE, El-Shrief AH, El-Deen Mohamed AS (2011a) Growth and productivity of pomegranate trees under different irrigation levels. II: fruit quality. J Hort Sci Ornamen Plants 3(3):259–264

    Google Scholar 

  • Khattab MM, Shaban AE, El-Shrief AH, El-Deen Mohamed AS (2011b) Growth and productivity of pomegranate trees under different irrigation levels. I: vegetative growth and fruiting. J Hort Sci Ornamen Plants 3(2):194–198

    Google Scholar 

  • Khattab MM, Shaban AE, El-Shrief AH, El-Deen Mohamed AS (2011c) Growth and productivity of pomegranate trees under different irrigation levels. III: leaf pigments, proline and mineral content. J Hort Sci Ornamen Plants 3(3):265–269

    Google Scholar 

  • Knight P, Coker CH, Anderson JM, Murchison DS, Watson CE (2005) Mist interval and K-IBA concentration influence rooting of orange and mountain azalea. Native Plants 6:111–117

    Google Scholar 

  • Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochem 64:923–933

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem 45:244–249

    Article  CAS  PubMed  Google Scholar 

  • Kung’U JB, Lasco RD, De La Cruz IU, De La Cruz RE, Husain T (2008) Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pak J Bot 40(5):2217–2224

    Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  Google Scholar 

  • Liu X, Huang B (2002) Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci 42:466–472

    Article  CAS  Google Scholar 

  • Liu X, Huang B, Banowetz G (2002) Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci 42:457–465

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159(1):89–102

    CAS  Google Scholar 

  • Martínez GJ (2011) Uso de plantas medicinales en el tratamiento de afecciones transmitidas por el agua en una comunidad Toba (QOM) del impenetrable (Chaco, Argentina): una perspectiva etnoecológica y sanitaria. Bonplandia 20(2):329–352, ISSN: 0524–0476

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz S, Naqvi SSM, Shereen A, Khan MA (1997) Salinity stress and the senescence process in wheat (Triticum aestivum L.). Pak J Bot 29:299–303

    Google Scholar 

  • Nacif de Abreu I, Mazzafera P (2005) Effects of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy. Plant Physiol Biochem 43:241–248

    Article  CAS  PubMed  Google Scholar 

  • Najafi A, Reza Arkadami M, Rejali F, Sajedi N (2012) Response of winter barely to co-inoculation with Azotobacter and mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann Biol Res 3(8):4002–4006

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

  • Oren‐Shamir M (2009) Does anthocyanin degradation plays a significant role in determining pigment concentration in plants? Plant Sci 177:310–316

    Article  Google Scholar 

  • Patumi M, D’Andria R, Marsilio V, Fontanazza G, Morelli G, Lanza B (2002) Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv Kalamata) in different irrigation regimes. Food Chem 77:27–34

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161, IN16-IN18

    Article  Google Scholar 

  • Pospísilová J, Synková H, Rulcová J (2000) Cytokinins and water stress. Biol Plant 43(3):321–328

    Article  Google Scholar 

  • Rahmaty R, Khara J (2011) Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turk J Biol 35:51–58

    CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivero RM, Gimeno J, Deynze AV, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 54(11):1929–1941

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrhizal Latuca sativa plants subjected to drought stress. New Phytol 134(2):327–333

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Safir GR, Boyer S, Gerdemann JW (1972) Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol 49:700–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shao L, Shu Z, Sun S, Peng C, Wang X, Lin Z (2007) Antioxidation of anthocyanins in photosynthesis under high temperature stress. J Integrat Plant Biol 49(9):1341–1351

    Article  CAS  Google Scholar 

  • Singh LP, Singh Gill S, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Stahl PD, Frost SM, Williams SE, Schuman GE (1998) Arbuscular Mycorrhizae and water stress tolerance of wyoming big sagebrush seedlings. Soil Sci Soc Am J 62(5):1309–1313

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Cytokinins, In: plant physiology. Sinauer Associates Inc Publishers, Sunderland Massachusetts, pp 621–650

    Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Muller J, Oetmuller R (2008) The role of auxins and cytokinins in the mutualistic interactions between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg AK, Perkins TD (2007) Contribution of anthocyanins to the antioxidant capacity of juvenile and senescing sugar maple (Acer saccharum) leaves. Funct Plant Biol 34(8):714–719

    Article  Google Scholar 

  • Van Staden J, Cook E, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 281–328

    Chapter  Google Scholar 

  • Vomácka L, Pospísilová J (2003) Rehydration of sugar beet plants after water stress: effect of cytokinins. Biol Plant 46(1):57–62

    Article  Google Scholar 

  • Wang J, Letham DS, Cornish E, Wei K, Hocart CH, Michael M, Stevenson KR (1997) Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter. II. Ipt and GUS gene expression, cytokinin levels and metabolism. Aust J Plant Physiol 24:673–683

    Article  CAS  Google Scholar 

  • Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Genet 10:305–317

    Article  CAS  Google Scholar 

  • Wu QS, Ren-Xue X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55(10):436–442

    CAS  Google Scholar 

  • Yamasaki H (1997) A function in colour. Trends Plant Sci 2(1):7–8

    Article  Google Scholar 

  • Ying YS, Tai XB (2012) Photoprotective mechanisms of leaf anthocyanins: research progress. NCBI PubMed – indexed for MEDLINE

  • Zhu XC, Song FB, Liu SQ (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9(2):583–587

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministerio de Ciencia y Tecnología (MINCyT) and Universidad de Buenos Aires (UBA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bompadre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bompadre, M.J., Fernández Bidondo, L., Silvani, V.A. et al. Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions. Symbiosis 65, 55–63 (2015). https://doi.org/10.1007/s13199-015-0318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0318-2

Keywords

Navigation