Skip to main content
Log in

From monoculture to the Norfolk system: assessment of arbuscular mycorrhizal fungi communities associated with different crop rotation systems

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In the last decades the management of arbuscular mycorrhizal fungi (AMF) has drawn increasing attention as a biological alternative to chemicals. For a profitable capitalization of these symbiota, a better understanding of which mechanisms could affect the dynamics of AMF communities is required. In the present study we evaluated the influence of different crop rotations on the AMF communities, after a 50 years field experiment established at Martonvásár, Hungary. Four types of crop rotation were chosen for sampling: corn monocropping as a control, corn-alfalfa, corn-wheat and corn-spring barley-peas-wheat. The level of root mycorrhization and the spore abundance in the soil were measured at different sampling times. Community composition of AMF in roots was analyzed with a molecular approach amplifying a portion of 18S rDNA. In the corn monoculture we found a relatively rich AMF community, with a number of phylotypes detected (11) higher than those found in previous works by molecular tools. Comparing the different crop rotation types highlighted remarkable differences in the composition and structure of the AMF assemblages showing that the nature of crop sequence has, in the long term, an important role in modeling the resident AMF community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alguacil MM, Lumini E, Roldán A, Salinas-Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Atkinson D, Baddeley JA, Goicoechea N, Green J, Sánchez-Díaz M, Watson CA (2002) Arbuscular mycorrhizal fungi in low input agriculture. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 211–222

    Chapter  Google Scholar 

  • Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604

    Article  PubMed  Google Scholar 

  • Berzsenyi Z, Győrffy B, Lap D (2000) Effect of crop rotation and fertilisation on corn and wheat yields and yield stability in a long-term experiment. Eur J Agron 13:225–244

    Article  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in corn fields by a molecular approach. Biol Fertil Soils 48:911–922

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010a) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010b) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Article  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung de Nährstoffzustandes der Böden. II. Kungl Lantbrukshögskolans Ann 26:199–215

    Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hassan SED, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metalpolluted soils. Mol Ecol 20:3469–3483

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630

    Article  CAS  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Ishii R, Drijber RA, Jeske ES (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils. doi:10.1007/s00374-013-0807-5

    Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Ianson DC, Allen MF (1986) The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia 78:164–168

    Article  Google Scholar 

  • Ijdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barca JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:946–958

    Article  Google Scholar 

  • Klironomos JN (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, Johnson-Green P (ed) Microbial biosystems: new frontiers, 8th International Symposium on Microbial Ecology. Halifax, Canada: Atlantic C Soc Microb Ecol p 845–851

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendahl S (2012) 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan Ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, p 1–8

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden MGA, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JP, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75

    Article  CAS  Google Scholar 

  • Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. doi:10.1007/s00572-013-0486-y

    PubMed  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Saito K, Suyama Y, Sato S, Sugawara K (2004) Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences. Mycorrhiza 14:363–373

    Article  CAS  PubMed  Google Scholar 

  • Sasvári Z, Hornok L, Posta K (2011) The community structure of arbuscular mycorrhizal fungi in roots of corn grown in a 50-year monoculture. Biol Fertil Soils 47:167–176

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the corn mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto H (2011) Commentary: do we have a consistent terminology for species diversity? Yes, if we choose to use it. Oecologia 167:903–911

    Article  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  PubMed Central  PubMed  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat Theor M 34:2123–2131

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Zoltán Berzsenyi for the valuable advice and helpful comments on field experiments. This study was supported by grants from the National Research Council (OTKA K101878)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Magurno.

Additional information

Franco Magurno and Zita Sasvári equally contributed to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(GIF 74 kb)

High Resolution Image (TIFF 15650 kb)

ESM 3

(GIF 42 kb)

High Resolution Image (TIFF 15651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magurno, F., Sasvári, Z. & Posta, K. From monoculture to the Norfolk system: assessment of arbuscular mycorrhizal fungi communities associated with different crop rotation systems. Symbiosis 64, 115–125 (2014). https://doi.org/10.1007/s13199-014-0309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0309-8

Keywords