Skip to main content
Log in

Phosphate concentration alters the effective bacterial quorum in the symbiosis of Medicago truncatula-Sinorhizobium meliloti

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The symbiosis of Medicago truncatula-Sinorhizobium meliloti is affected by phosphate (P) deficiency in the environment. Quorum sensing (QS) is a regulatory pathway in S. meliloti that controls various functions of free-living and symbiotic bacteria in response to phosphate availability and regulation is mediated by a periplasmic protein PstS, and also bacterial density. The quorum sensing pathway of S. meliloti, involves three genes named sinI, sinR and expR and also some bacterial auto-inducers such as N-acyl homoserine lactones (AHLs). In the current study, the expression of the different genes of quorum sensing and pstS were evaluated under 0.1, 0.5 and 2 mM P. The qRT-PCR results showed an increased expression of pstS and also the quorum sensing genes sinI and sinR but not expR, following phosphate starvation. Indeed, the enhanced level of sinR induces the expression of sinI that is responsible for the N-acyl homoserine lactones (AHL) production in S. meliloti. The different response of expR may be due to its negative control on sinR expression. In the symbiosis of M. truncatula-S. meliloti, it was shown that the concentration of phosphate in the medium alters the effective inoculating bacterial quorum (density). By increasing the phosphate concentration in the medium from 0.1 to 0.5 and 2 mM, considering the optimal plant growth and pink nodule (nitrogen-fixing) formation, the effective inoculating bacterial densities were 105, 107 and 109 CFU ml−1, respectively. Therefore, low phosphate concentrations can compensate for a low bacterial density by inducing the quorum sensing pathway and establishing a symbiosis. Conversely, bacterial density plays the main role in the formation of symbiosis at high phosphate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Niemi TS, Summers ML, Elkins JG, Kahn ML, McDermott TR (1997) Regulation of the phosphate stress response in Rhizobium meliloti by PhoB. Appl Environ Microbiol 63:4978–4981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahlawane C, Baumgarth B, Serrania J, Ruberg S, Becker A (2008) Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR- dependent regulation of two promoters. J Bacteriol 190:3456–3466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardin SD, Finan TM (1998) Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti. Genet 148:1689–1700

    CAS  Google Scholar 

  • Barker DG, Bianchi S, Blondon F et al (1990) Medicagi truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Belandreau J, Knowles R (1978) Interaction between non‐pathogenic soil microorganisms and plants. Elsevier, Amsterdam

    Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charoenpanich P, Meyer S, Becker A, McIntosh M (2013) Temporal expression of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195:3224–3236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the luxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  PubMed Central  PubMed  Google Scholar 

  • GuiRong T, DaWei L, Dong W, Li L (2013) Sinorhizobium meliloti lsrB is involved in alfalfa root nodule development and nitrogen fixing bacteroid differentiation. Chin Sci Bull 58:4077–4083

    Article  Google Scholar 

  • Gurich N, Gonzalez JE (2009) Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol 191:4372–4382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: theSinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krol E, Becker A (2004) Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Gen Genomics 272:1–17

    Article  CAS  Google Scholar 

  • Lamarche MG, Wanner BL, Crepin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆C T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McIntosh M, Meyer S, Becker A (2009) Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 75:1238–1256

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  Google Scholar 

  • Paau AS, Brill WJ (1982) Comparison of the genomic arrangement and the relative transcription of the nitrogenase gene in Rhizobium meliloti during symbiotic development in alfalfa root nodules. Can J Microbiol 28:1330–1339

    Article  CAS  Google Scholar 

  • Robson AD, O’Hara GW, Abbott LK (1981) Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Aust J Plant Physiol 8:427–436

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sprent JI (1989) Which steps are essential for the formation of functional legume nodules? New Phytol 111:129–153

    Article  Google Scholar 

  • Stewart RE, Hodges SC, Mulvaney MJ, Pavuluri K, Thomason WE (2014) Rhizosphere phosphorus solubility and plant uptake as affected by crop in a clay soil from the central Plateau region of Haiti. Commun Soil Sci Plant Anal. doi:10.1080/00103624.2013.867047

    Google Scholar 

  • Summers ML, Denton MC, McDermott TR (1999) Genes coding for phosphotrans acetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by PhoB. J Bacteriol 181:2217–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang C, Hinsinger P, Drevon JJ, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Biol 88:131–138

    CAS  Google Scholar 

  • Yuan ZC, Zaheer R, Morton R, Finan TM (2006) Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan HJ, Lee CC, Leigh JA (1991) Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol 173:7391–7394

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Matthew McIntosh, Stefan Meyer, Marta Robledo, Elizaveta Krol and specially to Prof. Anke Becker for helpful guidance and advice. Special thanks to the University of Isfahan for financial support and Philipps University of Marburg for providing materials and laboratory space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Mostajeran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakdaman, N., Mostajeran, A. & Hojati, Z. Phosphate concentration alters the effective bacterial quorum in the symbiosis of Medicago truncatula-Sinorhizobium meliloti . Symbiosis 62, 151–155 (2014). https://doi.org/10.1007/s13199-014-0280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0280-4

Keywords

Navigation