Skip to main content
Log in

Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Issues, like emerging insecticide resistance in Anopheles mosquitoes, have led to a breakdown in many vector control programs. In this study, a recombinant Escherichia coli with plasmid expressing a green fluorescent protein (E.coli-GFP) was used as a paratransgenesis model to determine: the possibility of E. coli-GFP trans-stadial transmission. The effect of the water microflora, of bacteria-impregnated sugar solutions, and of blood-feeding on E. coli-GFP colonization and localization within An. stephensi tissues, were studied. The results demonstrated the persistence of E. coli-GFP during molting and metamorphosis events and its trans-stadial transmission. Also the efficacy of bacteria-impregnated sugar solutions for transferring the bacteria to the adult mosquito’s midgut was shown. A blood meal dramatically increased the number of bacteria within 24–48 h post feeding. In addition to fluorescence microscope evaluation, GFP gene PCR amplification showed the presence of the bacteria in the midgut of larvae, pupae, and adults up to 13 days after eclosion. Massive colonization of bacteria was observed in the larvae and in the adult mosquito’s malpighian tubules which may play a role in retaining bacteria in adult mosquitos. The results of this study showed that E. coli could be used as a laboratory model in paratransgenesis studies for the evaluation of various effector molecules as anti-parasite agents for malaria and filariasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksoy S, Weiss B, Attardo G (2008) Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Adv Exp Med Biol 627:35–48. doi:10.1007/978-0-387-78225-6_3

    Article  PubMed  CAS  Google Scholar 

  • Andreadis TG (2005) Evolutionary strategies and adaptations for survival between mosquito-parasitic microsporidia and their intermediate copepod hosts: a comparative examination of Amblyospora connecticus and Hyalinocysta chapmani (Microsporidia: Amblyosporidae). Folia parasitologica 52(1–2):23–35

    PubMed  Google Scholar 

  • Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 7(7):e40401

    Article  PubMed  CAS  Google Scholar 

  • Azari-Hamidian S, Yaghoobi-Ershadi MR, Javadian E, Abai MR, Mobedi I, Linton YM, Harbach RE (2009) Distribution and ecology of mosquitoes in a focus of dirofilariasis in northwestern Iran, with the first finding of filarial larvae in naturally infected local mosquitoes. Med Vet Entomol 23(2):111–121. doi:10.1111/j.1365-2915.2009.00802.x

    Article  PubMed  CAS  Google Scholar 

  • Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141. doi:10.1146/annurev.ento.47.091201.145144

    Article  PubMed  CAS  Google Scholar 

  • Benedict M (2007) Methods in Anopheles research. Malaria Research and Reference Reagent Resource Center, Atlanta

    Google Scholar 

  • Bisi DC, Lampe DJ (2011) Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 77(13):4669–4675

    Article  PubMed  CAS  Google Scholar 

  • Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathogens 8(5):e1002742

    Article  PubMed  Google Scholar 

  • Breman JG, Egan A, Keusch GT (2001) The intolerable burden of malaria: a new look at the numbers. AmJTrop Med Hyg 64(1–2 Suppl):iv–vii

    CAS  Google Scholar 

  • Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J (2003) Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17(1):87–94

    Article  PubMed  CAS  Google Scholar 

  • Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P (1999a) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ 77(3):230–234

    PubMed  CAS  Google Scholar 

  • Chandre F, Manguin S, Brengues C, Dossou Yovo J, Darriet F, Diabate A, Carnevale P, Guillet P (1999b) Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from west Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41(1–3):319–322

    PubMed  CAS  Google Scholar 

  • Chapelle F (2001) Ground-Water Microbiology and Geochemistry, John Wily & Sons

  • Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S (2012) Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop 121(2):129–134

    Article  PubMed  Google Scholar 

  • Coutinho-Abreu IV, Zhu KY, Ramalho-Ortigao M (2010) Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitol Int 59(1):1–8. doi:10.1016/j.parint.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G (2010) Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 60(3):644–654. doi:10.1007/s00248-010-9704-8

    Article  PubMed  Google Scholar 

  • Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J (2003) Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol 17(2):138–144

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St. Leger RJ (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331(6020):1074–1077. doi:10.1126/science.1199115

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci 104(21):9047–9051

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C, Daffonchio D (2008) Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol 627:49–59. doi:10.1007/978-0-387-78225-6_4

    Article  PubMed  CAS  Google Scholar 

  • Gautam NK, Tapadia MG (2010) Ecdysone signaling is required for proper organization and fluid secretion of stellate cells in the Malpighian tubules of Drosophila melanogaster. Int J Dev Biol 54(4):635–642. doi:10.1387/ijdb.092910ng

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol 40(3):371–374

    Article  PubMed  Google Scholar 

  • Hill CA, Kafatos FC, Stansfield SK, Collins FH (2005) Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3(3):262–268. doi:10.1038/nrmicro1101

    Article  PubMed  CAS  Google Scholar 

  • Howard AF, Koenraadt CJ, Farenhorst M, Knols BG, Takken W (2010) Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar J 9:168. doi:10.1186/1475-2875-9-168

    Article  PubMed  Google Scholar 

  • Hunt R, Edwardes M, Coetzee M (2010) Pyrethroid resistance in southern African Anopheles funestus extends to Likoma Island in Lake Malawi. Parasit Vectors 3:122. doi:10.1186/1756-3305-3-122

    Article  PubMed  CAS  Google Scholar 

  • Kan SP, Rajah KV, Dissanaike AS (1977) Survey of dirofilariasis among dogs in seremban, Malaysia. Vet Parasitol 3(2):177–181

    Article  Google Scholar 

  • Li J, McLellan S, Ogawa S (2006) Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Res 40(16):3023–3028

    Article  PubMed  CAS  Google Scholar 

  • Lindh J, Borg-Karlson A, Faye I (2008) Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop 107:242–250

    Article  PubMed  CAS  Google Scholar 

  • Lindh JM, Terenius O, Eriksson-Gonzales K, Knols BG, Faye I (2006) Re-introducing bacteria in mosquitoes–a method for determination of mosquito feeding preferences based on coloured sugar solutions. Acta Trop 99(2–3):173–183. doi:10.1016/j.actatropica.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  • Lindh JM, Terenius O, Faye I (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71(11):7217–7223. doi:10.1128/AEM.71.11.7217-7223.2005

    Article  PubMed  CAS  Google Scholar 

  • Lundström JO, Andersson AC, Bäckman S, Schäfer ML, Forsman M, Thelaus J (2011) Transstadial transmission of Francisella tularensis holarctica in mosquitoes, Sweden. Emerg Infect Dis 17(5):794

    Article  PubMed  Google Scholar 

  • Magesa SM, Aina O, Curtis CF (1994) Detection of pyrethroid resistance in Anopheles mosquitos. Bull World Health Organ 72(5):737–740

    PubMed  CAS  Google Scholar 

  • McJunkin JE, de los Reyes EC, Irazuzta JE, Caceres MJ, Khan RR, Minnich LL, Fu KD, Lovett GD, Tsai T, Thompson A (2001) La Crosse encephalitis in children. New England. Journal of Medicine 344(11):801–807

    CAS  Google Scholar 

  • Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38(1):29–32

    Article  PubMed  CAS  Google Scholar 

  • Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK (2008) Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malar J 7:247. doi:10.1186/1475-2875-7-247

    Article  PubMed  Google Scholar 

  • Muro A, Genchi C, Cordero M, Simón F (1999) Human dirofilariasis in the European union. Parasitology Today 15(9):386–389

    Article  PubMed  CAS  Google Scholar 

  • Oshaghi MA, Yaaghoobi F, Abaie MR (2006) Pattern of mitochondrial DNA variation between and within Anopheles stephensi (Diptera: Culicidae) biological forms suggests extensive gene flow. Acta Trop 99(2–3):226–233

    Article  PubMed  CAS  Google Scholar 

  • Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on cultured and uncultured microbiota of wild culex quinquefasciatus mosquito midgut based on 16 s ribosomal RNA gene analysis. AmJTrop Med Hyg 70(6):597–603

    CAS  Google Scholar 

  • Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. AmJTrop Med Hyg 54(2):214–218

    CAS  Google Scholar 

  • Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar R (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol 9(1):96

    Article  PubMed  Google Scholar 

  • Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98. doi:10.1016/j.pt.2010.08.004

    Article  PubMed  CAS  Google Scholar 

  • Reese SM, Petersen JM, Sheldon SW, Dolan MC, Dietrich G, Piesman J, Eisen RJ (2011) Transmission efficiency of Francisella tularensis by adult american dog ticks (Acari: Ixodidae). Journal of medical entomology 48(4):884–890

    Article  PubMed  Google Scholar 

  • Ren X, Hoiczyk E, Rasgon JL (2008) Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog 4(8):e1000135. doi:10.1371/journal.ppat.1000135

    Article  PubMed  Google Scholar 

  • Riehle MA, Jacobs-Lorena M (2005) Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol 35(7):699–707. doi:10.1016/j.ibmb.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  • Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M (2007) Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 37(6):595–603. doi:10.1016/j.ijpara.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1. CSHL press

  • Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, Kelly Modis L, Kastner P, Chan S, Duprez E, Otto C, Sieweke MH (2009) MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138(2):300–313

    Article  PubMed  CAS  Google Scholar 

  • Singh SR, Hou SX (2009) Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster. J Exp Biol 212(Pt 3):413–423. doi:10.1242/jeb.024216

    Article  PubMed  CAS  Google Scholar 

  • Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol 35(3):222–226

    PubMed  CAS  Google Scholar 

  • Terenius O, de Oliveira CD, Pinheiro WD, Tadei WP, James AA, Marinotti O (2008) 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes. J Med Entomol 45(1):172–175

    Article  PubMed  CAS  Google Scholar 

  • Theis JH (2005) Public health aspects of dirofilariasis in the United States. Vet Parasitol 133:157–180

    Article  PubMed  CAS  Google Scholar 

  • Turell MJ, Saluzzo JF, Tammariello RF, Smith JF (1990) Generation and transmission of Rift Valley fever viral reassortants by the mosquito Culex pipiens. J Gen Virol 71(10):2307–2312

    Article  PubMed  CAS  Google Scholar 

  • Vatandoost H, Mashayekhi M, Abaie MR, Aflatoonian MR, Hanafi-Bojd AA, Sharifi I (2005) Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vector Borne Dis 42(3):100–108

    PubMed  CAS  Google Scholar 

  • Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, Hanafi-Bojd AA, Zamani G, Townson H (2006) Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop 97(2):196–203. doi:10.1016/j.actatropica.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Fang W, Vega-Rodriguez J, Ghosh A, Leger RS, Jacobs-Lorena M (2011a) Fighting Malaria with engineered fungi and bacteria. In: Molecular and population biology of disease vectors, Orthodox Academy of Crete Kolymbari, Greece

  • Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J (2011b) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6(9):e24767. doi:10.1371/journal.pone.0024767

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences

  • WHO (2010) World malaria report 2010. World Health Organization.

Download references

Acknowledgment

Authors would like to thank Eng. Abaei, MR. and Eng. Rafie, F. for their assistance in An. stephensi rearing. This study was financially supported by the Tehran University of Medical Sciences (TUMS). The authors also thank the anonymous reviewers for their helpful comments and Professor David Richardson for assistance with editing and improving the English.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

ARC did the experiments, analyzed the results and wrote the draft of manuscript, MAO and HV designed the study and coordinated the team works, BY and FZ assist the bacterial experiments and AR reviewed the manuscript and finalized the study design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Oshaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavshin, A.R., Oshaghi, M.A., Vatandoost, H. et al. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis 60, 17–24 (2013). https://doi.org/10.1007/s13199-013-0231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-013-0231-5

Keywords

Navigation