, Volume 58, Issue 1–3, pp 221–232 | Cite as

Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty

  • Karen N. Pelletreau
  • Jared M. Worful
  • Kara E. Sarver
  • Mary E. Rumpho


The kleptoplastic sacoglossan Elysia chlorotica shares a requisite, intracellular symbiosis with the plastids (= chloroplasts) of the Xanthophyte alga Vaucheria litorea. Although wild specimens have been used to address a range of biological questions, no studies have thoroughly characterized animal development during the initial establishment of the symbiosis under controlled laboratory conditions. Laboratory culture conditions were modified and the time required for successful metamorphosis was reduced by 40 % relative to previous work. Plastids were not initially stable within the host; “permanent kleptoplasty” was obtained only after ≥7 days of feeding on V. litorea. Feeding for shorter time periods resulted in the loss of plastids and abnormal development; this phase was characterized as “transient kleptoplasty”. Individuals in the transient state exhibited a significantly greater decrease in length compared to animals with permanent kleptoplasts after the same starvation period. To test the effect of food availability after obtaining permanent kleptoplasty, animals were subjected to various dietary regimes followed by a recovery period of constant feeding. Thirty percent of animals survived prolonged starvation (>4 weeks) after only the initial week of feeding required to establish permanent kleptoplasty. All treatments showed rapid growth when re-exposed to Vaucheria. Thus, during initial development E. chlorotica experiences enhanced fitness when Vaucheria is available for consumption. However, the animal rapidly establishes permanent kleptoplasty, which bestows flexible food requirements and resistance to food limitation, a likely advantage for E. chlorotica in salt marsh environments where Vaucheria sp. abundance is sporadic.


Elysia chlorotica Vaucheria litorea Kleptoplasty Symbiosis Invertebrate development 



We would like to acknowledge Geoffry Davis who aided in the E. chlorotica culture, Kathryn Dutil who maintained the V. litorea cultures, and Søren Hanson who provided the I. galbana cultures. We would also like to thank the reviewers of this paper for providing constructive suggestions. This research was supported by the National Science Foundation (grant IOS-0726178 to M.E.R.). This is Maine Agricultural and Forest Experiment Station Publication Number 3297, Hatch Project no. ME08361-08MRF (NC 1168).


  1. Capo TR, Bardales AT, Gillette PR, Lara MR, Schmale MC, Serafy JE (2009) Larval growth, development, and survival of laboratory-reared Aplysia californica: effects of diet and veliger density. Comp Biochem Physiol C 149(2):215–223Google Scholar
  2. Clark KB, Jensen KR, Strits HM (1990) Survey for functional kleptoplasty among west Atlantic Ascoglossa (Sacoglossa) (Mollusca: Opisthobranchia). Veliger 33:339–345Google Scholar
  3. Davis GM, Mazurkiewicz M, Mandracchia M (1982) Spurwinkia—morphology, systematics, and ecology of a new genus of North American marshland Hydrobiidae (mollusca, gastropoda). Proc Acad Nat Sci Phila 134:143–177Google Scholar
  4. de Negri A, de Negri G (1876) Ber Deut Chem Ges Berl 9:84Google Scholar
  5. Devine SP, Pelletreau KN, Rumpho ME (2012) 16S rDNA-based metagenomic analysis of bacterial diversity associated with two populations of the kleptoplastic sea slug Elysia chlorotica and its algal prey Vaucheria litorea. Biol Bull 223(1):138–154PubMedGoogle Scholar
  6. Evertsen J, Burghardt I, Johnsen G, Wägele H (2007) Retention of functional chloroplasts in some sacoglossans from the Indo-pacific and Mediterranean. Mar Biol 151:2159–2166CrossRefGoogle Scholar
  7. Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev 198:185–202PubMedCrossRefGoogle Scholar
  8. Gordon AH, Darcy Hart P, Young MR (1980) Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286(5768):79–80PubMedCrossRefGoogle Scholar
  9. Goren MB (1977) Phagocyte lysosomes—interactions with infectious agents, phagosomes, and experimental perturbations in function. Annu Rev Microbiol 31:507–533PubMedCrossRefGoogle Scholar
  10. Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, Pierce SK, Rumpho ME (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol 124(1):331–342PubMedCrossRefGoogle Scholar
  11. Green BJ, Fox TC, Rumpho ME (2005) Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis 40(1):31–40Google Scholar
  12. Gross J, Bhattacharya D, Pelletreau KN, Rumpho ME, Reyes-Prieto A (2012) Secondary and tertiary endosymbiosis and kleptoplasty. In: Bock R, Knoop V, (eds) Advances in photosynthesis and respiration—Genomics of chloroplasts and mitochondria. Springer Science+Business Media B.V., 35, pp 000–000, doi: 10.1007/978-94-007-2920-9_2
  13. Händeler K, Grzymbowski YP, Krug PJ, Wägele H (2009) Functional chloroplasts in metazoan cells—a unique strategy in animal life. Front Zool 6:28PubMedCrossRefGoogle Scholar
  14. Harrigan JF, Alkon DL (1978) Laboratory cultivation of Haminoea solitaria (Say, 1822) and Elysia chlorotica (Gould, 1870). Veliger 21(2):299–305Google Scholar
  15. Hart PDA (1979) Phagosome-lysosome fusion in macrophages: a hinge in the intracellular fate of ingested microorganisms. Front Biol 48:409–423Google Scholar
  16. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300(1):349–365PubMedCrossRefGoogle Scholar
  17. Hohman TC, McNeil PL, Muscatine L (1982) Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis. J Cell Biol 94(1):56–63PubMedCrossRefGoogle Scholar
  18. Jones TC, Hirsch JG (1972) Interactions between Toxoplasma gondii and mammalian cells 2. Absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med 136(5):1173–1194PubMedCrossRefGoogle Scholar
  19. Karakashian SJ, Rudzinska MA (1981) Inhibition of lysosomal fusion with symbiont-containing vacuoles in Paramecium bursaria. Exp Cell Res 131(2):387–393PubMedCrossRefGoogle Scholar
  20. Kawaguti S, Yamasu T (1965) Electron microscopy on the symbiosis between and elysioid gastropod and chloroplasts of a green alga. Biol J Okayama Univ 11:57–65Google Scholar
  21. Kodama Y, Fujishima M (2010) Secondary symbiosis between Paramecium and Chlorella cells. Int Rev Cell Mol Biol 279:33–77PubMedCrossRefGoogle Scholar
  22. Kriegstein AR, Castellucci V, Kandel ER (1974) Metamorphosis of Aplysia californica in laboratory culture. Proc Natl Acad Sci USA 71(9):3654–3658PubMedCrossRefGoogle Scholar
  23. Krug PJ (1998) Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta. Mar Biol 132(3):483–494CrossRefGoogle Scholar
  24. Krug PJ (2007) Poecilogony and larval ecology in the gastropod genus Alderia. Am Malacol Bull 23(1–2):99–111CrossRefGoogle Scholar
  25. McFall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 22(1):48–53PubMedCrossRefGoogle Scholar
  26. Messier-Solek C, Buckley KM, Rast JP (2010) Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 22(1):39–47PubMedCrossRefGoogle Scholar
  27. Mondy WL, Pierce SK (2003) Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica). Invert Biol 122(2):126–137CrossRefGoogle Scholar
  28. Müjer CV, Andrews DL, Manhart JR, Pierce SK, Rumpho ME (1996) Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Proc Natl Acad Sci USA 93(22):12333–12338PubMedCrossRefGoogle Scholar
  29. Muscatine L, McNeil PL (1989) Endosymbiosis in Hydra and the evolution of internal defense systems. Am Zool 29(2):371–386Google Scholar
  30. Nyholm SV, McFall-Ngai MJ (2004) The winnowing: establishing the squid-Vibrio symbiosis. Nat Rev Microbiol 2(8):632–642PubMedCrossRefGoogle Scholar
  31. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ Microbiol 11(2):483–493PubMedCrossRefGoogle Scholar
  32. Pelletreau KN, Bhattacharya D, Price DC, Worful JM, Moustafa A, Rumpho ME (2011) Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Physiol 155(4):1561–1565PubMedCrossRefGoogle Scholar
  33. Pethe K, Swenson DL, Alonso S, Anderson J, Wang C, Russell DG (2004) Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101(37):13642–13647PubMedCrossRefGoogle Scholar
  34. Pierce SK, Curtis NE (2012) Cell biology of the chloroplast symbiosis in sacoglossan sea slugs. In: Jeon KW (ed) International review of cell and molecular biology, 293. Academic, Burlington, pp 123–148CrossRefGoogle Scholar
  35. Pierce SK, Biron RW, Rumpho ME (1996) Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture. J Exp Biol 199:2323–2330PubMedGoogle Scholar
  36. Pierce SK, Maugel TK, Rumpho ME, Hanten JJ, Mondy WL (1999) Annual viral expression in a sea slug population: life cycle control and symbiotic chloroplast maintenance. Biol Bull 197(1):1–6CrossRefGoogle Scholar
  37. Pierce SK, Massey SE, Hanten JJ, Curtis NE (2003) Horizontal transfer of functional nuclear genes between multicellular organisms. Biol Bull 204(3):237–240PubMedCrossRefGoogle Scholar
  38. Pierce SK, Curtis NE, Hanten JJ, Boerner SL, Schwartz JA (2007) Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43(2):57–64Google Scholar
  39. Pierce SK, Curtis NE, Schwartz JA (2009) Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis 49(3):121–131CrossRefGoogle Scholar
  40. Plaut I, Borut A, Spira ME (1995) Growth and metamorphosis of Aplysia oculifera larvae in laboratory culture. Mar Biol 122(3):425–430CrossRefGoogle Scholar
  41. Pluddemann A, Mukhopadhyay S, Gordon S (2011) Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev 240:11–24PubMedCrossRefGoogle Scholar
  42. Rast JP, Messier-Solek C (2008) Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 214(3):274–283PubMedCrossRefGoogle Scholar
  43. Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Review—genomic insights into the immune system of the sea urchin. Science 314(5801):952–956PubMedCrossRefGoogle Scholar
  44. Rosenstiel P, Philipp ER, Schreiber S, Bosch TG (2009) Evolution and function of innate immune receptors—insights from marine invertebrates. J Innate Immun 1(4):291–300PubMedCrossRefGoogle Scholar
  45. Rowley AF, Powell A (2007) Invertebrate immune systems-specific, quasi-specific, or nonspecific? J Immunol 179(11):7209–7214PubMedGoogle Scholar
  46. Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123(1):29–38PubMedCrossRefGoogle Scholar
  47. Rumpho ME, Summer EJ, Green BJ, Fox TC, Manhart JR (2001) Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology 104(3–4):303–312PubMedCrossRefGoogle Scholar
  48. Rumpho ME, Dastoor FP, Manhart JR, Lee J (2006) The kleptoplast. In: Wise RR, Hoober JK (eds) Advances in photosynthesis and respiration: the structure and function of plastids. Springer, Dordrecht, pp 451–473CrossRefGoogle Scholar
  49. Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA 105(46):17867–17871PubMedCrossRefGoogle Scholar
  50. Rumpho ME, Pochareddy S, Worful JM, Summer EJ, Bhattacharya D, Pelletreau KN, Tyler MS, Lee J, Manhart JR, Soule KM (2009) Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. Mol Plant 2(6):1384–1396PubMedCrossRefGoogle Scholar
  51. Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214:303–311PubMedCrossRefGoogle Scholar
  52. Russell DG, Mwandumba HC, Rhoades EE (2002) Mycobacterium and the coat of many lipids. J Cell Biol 158(3):421–426PubMedCrossRefGoogle Scholar
  53. Schwartz JA, Curtis NE, Pierce SK (2010) Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol 37(1):29–37CrossRefGoogle Scholar
  54. Soule KM, Rumpho ME (2012) Light-regulated photosynthetic gene expression and phosphoribulokinase enzyme activity in the heterokont alga Vaucheria litorea (Xanthophyceae) and its symbiotic molluscan partner Elysia chlorotica (Gastropoda). J Phyc 48(2):373–383CrossRefGoogle Scholar
  55. Switzer-Dunlap M, Hadfield MG (1977) Observations on development, larval growth and metamorphosis of four species of Aplysiidae (Gastropoda: Opisthobranchia). J Exp Mar Biol Ecol 29:245–261CrossRefGoogle Scholar
  56. Trench RK (1975) Of ‘leaves that crawl’: functional chloroplasts in animal cells. In: Jennings DH (ed) Symp Soc Exp Biol, Cambridge University Press, London, pp 229–265Google Scholar
  57. Trench RK, Trench ME, Muscatine L (1972) Symbiotic chloroplasts—their photosynthetic products and contribution to mucus synthesis in two marine slugs. Biol Bull 142(2):335–349PubMedCrossRefGoogle Scholar
  58. Trowbridge CD (2000) The missing links: larval and post-larval development of the ascoglossan opisthobranch Elysia viridis. J Mar Biol Assoc UK 80(6):1087–1094CrossRefGoogle Scholar
  59. Vergne I, Chua J, Singh SB, Deretic V (2004) Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 20:367–394PubMedCrossRefGoogle Scholar
  60. West HH (1979) Chloroplast symbiosis and development of the ascoglossan opistobranch Elysia chlorotica. PhD thesis, Northeastern University, Boston, MAGoogle Scholar
  61. West HH, Harrigan J (1979) Symbiosis and development in two populations of Elysia chlorotica. Am Zool 19(3):958Google Scholar
  62. West HH, Harrigan JF, Pierce SK (1984) Hybridization of two populations of a marine opisthobranch with different developmental patterns. Veliger 26(3):199–206Google Scholar
  63. Worful JM (2008) Elysia chlorotica (Gould, 1870): towards the development of a novel system for the elucidation of horizontal gene transfer, invertebrate developmental biology and secondary metabolites. M.S Thesis, University of MaineGoogle Scholar
  64. Yamamoto YY, Yusa Y, Yamamoto S, Hirano Y, Hirano Y, Motomura T, Tanemura T, Obokata J (2009) Identification of photosynthetic sacoglossans from Japan. Encocytobiosis Cell Res 19:112–119Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Karen N. Pelletreau
    • 1
    • 2
  • Jared M. Worful
    • 1
    • 3
  • Kara E. Sarver
    • 1
    • 4
  • Mary E. Rumpho
    • 1
    • 2
  1. 1.Department of Molecular and Biomedical SciencesUniversity of MaineOronoUSA
  2. 2.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  3. 3.ImmunoGen, Inc.WalthamUSA
  4. 4.USDA-ARS; Horticultural Crops ResearchCorvallisUSA

Personalised recommendations