Skip to main content
Log in

Disparate role of rhizobial ACC deaminase in root-nodule symbioses

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase converts ACC, a precursor of the plant hormone ethylene, into ammonia and α-ketobutyrate. ACC deaminase is widespread among the rhizobia in which it might play a crucial role in protecting rhizobia against inhibitory effects of ethylene synthesized by the host plant in response to the nodulation process. The beneficial action of this enzyme was demonstrated in several rhizobia such as Mesorhizobium loti and Rhizobium leguminosarum where knock-out mutants of the ACC deaminase gene showed nodulation defects. The genome of the slow-growing rhizobial species Bradyrhizobium japonicum also carries an annotated gene for a putative ACC deaminase (blr0241). Here, we tested the possible importance of this enzyme in B. japonicum by constructing an insertion mutant of blr0241 and studying its phenotype. First, the activity of ACC deaminase itself was measured. Unlike the B. japonicum wild type, the blr0241 mutant did not show any enzymatic activity. By contrast, the mutant was not impaired in its ability to nodulate soybean, cowpea, siratro, and mungbean. Likewise, symbiotic nitrogen fixation activity remained unaffected. Furthermore, a co-inoculation assay with the B. japonicum wild type and the blr0241 mutant for soybean and siratro nodulation revealed that the mutant was not affected in its competitiveness for nodulation and nodule occupation. The results show that the role previously ascribed to ACC deaminase in the rhizobia cannot be generalized, and species-specific differences may exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  PubMed  CAS  Google Scholar 

  • Alexeyev MF (1995) Three kanamycin resistance gene cassettes with different polylinkers. Biotechniques 18:52–56

    PubMed  CAS  Google Scholar 

  • Cheng Z, Duncker BP, McConkey BJ, Glick BR (2008) Transcriptional regulation of ACC deaminase gene expression in Pseudomonas putida UW4. Can J Microbiol 54:128–136

    Article  PubMed  CAS  Google Scholar 

  • Conforte VP, Echeverria M, Sanchez C, Ugalde RA, Menendez AB, Lepek VC (2010) Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. J Gen Appl Microbiol 56:331–338

    Article  PubMed  CAS  Google Scholar 

  • Daniel RM (1972) Anaerobic-nitrate, symbiotic and aerobic growth of Rhizobium japonicum. Effects on cytochrome P450, other hemoproteins, nitrate and nitrite reductases. Biochim Biophys Acta Bioenerg 275:347–354

    Article  CAS  Google Scholar 

  • Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G (2010) An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 10:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Fujino A, Ose T, Yao M, Tokiwano T, Honma M, Watanabe N, Tanaka I (2004) Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J Mol Biol 341:999–1013

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Göttfert M, Hitz S, Hennecke H (1990) Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Mol Plant-Microbe Interact 3:308–316

    Article  PubMed  Google Scholar 

  • Hahn M, Hennecke H (1984) Localized mutagenesis in Rhizobium japonicum. Mol Gen Genet 193:46–52

    Article  CAS  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2011) ACC deaminase activity in avirulent Agrobacterium tumefaciens D3. Can J Microbiol 57:278–286

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer HM, Hennecke H (2007) Dissection of the Bradyrhizobium japonicum NifA+σ54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genomics 278:255–271

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Jia YJ, Ito H, Matsui H, Honma M (2000) 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci Biotechnol Biochem 64:299–305

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Karthikeyan S, Zhou QX, Zhao ZB, Kao CL, Tao ZH, Robinson H, Liu HW, Zhang H (2004) Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: Insight into the mechanism of a unique pyridoxal-5′-phosphate dependent cyclopropane ring-opening reaction. Biochemistry 43:13328–13339

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H (2010) Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol-Plant Microbe Interact 23:784–790

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:1759–1763

    Article  PubMed  CAS  Google Scholar 

  • Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  PubMed  CAS  Google Scholar 

  • Ma WB, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954

    Article  PubMed  CAS  Google Scholar 

  • Ma WB, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003a) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. A van Leeuw J Microb 83:285–291

    Article  CAS  Google Scholar 

  • Ma WB, Guinel FC, Glick BR (2003b) Rhizobium leguminosarum bv. viciae 1-aminocyclopropane-1 carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  PubMed  CAS  Google Scholar 

  • Ma WB, Charles TC, Glick BR (2004) PV expression of an exogenous 1-aminocyclopropane 1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Laboratories, Cold Spring Harbour

    Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Ezura H, Yuhashi KI, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    PubMed  CAS  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Plant Physiol 118:10–15

    Article  CAS  Google Scholar 

  • Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant-Microbe Interact 20:1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Cristestes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693

    Article  PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dyé F, Moënne-Loccoz Y (2008) Physical organization and phylogenetic analysis of AcdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobenefical Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219

    Article  PubMed  CAS  Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135:103–109

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider A, Bonacina E, Schmidt A, Papenbrock J (2005) Isolation and characterization of a second D-cysteine desulfhydrase-like protein from Arabidopsis. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds) Sulfur transport and assimilation in plants in the post genomic era. Backhuys Publishers, Leiden, pp 103–106

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol 119:951–959

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li JP, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1997) Ethylene as a regulator of Rhizobium infection. Trends Plant Sci 2:203–204

    Article  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    Article  PubMed  CAS  Google Scholar 

  • Suganuma N, Yamauchi H, Yamamoto K (1995) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci 111:163–168

    Article  CAS  Google Scholar 

  • Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil 257:125–131

    Article  CAS  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Pascal RA, Johnston M, Raines R, Dikshit D, Krantz A, Honma M (1981) Mechanistic studies on the pyridoxal-phosphate enzyme 1-aminocyclopropane-1 carboxylate deaminase from Pseudomonas sp. Biochemistry 20:7509–7519

    Article  PubMed  CAS  Google Scholar 

  • Yao M, Ose T, Sugimoto H, Horiuchi A, Nakagawa A, Wakatsuki S, Yokoi D, Murakami T, Honma M, Tanaka I (2000) Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biol Chem 275:34557–34565

    Article  PubMed  CAS  Google Scholar 

  • Yasuta T, Satoh S, Minamisawa K (1999) New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852

    PubMed  CAS  Google Scholar 

  • Zufferey R, Preisig O, Hennecke H, Thöny-Meyer L (1996) Assembly and function of the cytochrome cbb 3 oxidase subunits in Brady-rhizobium japonicum. J Biol Chem 271:9114–9119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Swiss National Science Foundation and the ETH Zürich. We thank Dieter Haas for alerting us to the broad substrate specificity of ACC deaminase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Murset.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 65.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murset, V., Hennecke, H. & Pessi, G. Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis 57, 43–50 (2012). https://doi.org/10.1007/s13199-012-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0177-z

Keywords

Navigation