Skip to main content

Symbioses between salamander embryos and green algae

Abstract

The symbiosis between Ambystoma maculatum (spotted salamander) embryos and green algae was initially described over 120 years ago. Algae populate the egg capsules that surround individual A. maculatum embryos, giving the intracapsular fluid a characteristic green hue. Early work established this symbiosis to be a mutualism, while subsequent studies sought to identify the material benefits of this association to both symbiont and host. These studies have shown that salamander embryos benefit from increased oxygen concentrations provided by their symbiotic algae. The algae, in turn, may benefit from ammonia excreted by the embryos. All of these early studies considered the association to be an ectosymbiotic mutualism. However our recent work has shown that algae invade both embryonic salamander cells and tissues during development. The unexpected invasion of algal cells into a salamander host changes our understanding of this symbiosis. This review will summarize the earlier research on this association in the context of these recent findings. It will also emphasize gaps in our understanding of this and other amphibian embryo-algal interactions and suggest various research avenues to address these unanswered questions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson J, Hassinger D, Dalrymple G (1971) Natural mortality of eggs and larvae of Ambystoma t. tigrinum. Ecology 52:1107–1112

    Article  Google Scholar 

  • Archetti M, Ubeda F, Fudenberg D, Green J, Pierce NE, Yu DW (2011) Let the right one in: a microeconomic approach to partner choice in mutualisms. Am Nat 177:75–85

    PubMed  Article  Google Scholar 

  • Bachmann M, Carlton R, Burkholder J, Wetzel R (1985) Symbiosis between salamander eggs and green algae: microelectrode measurements inside eggs demonstrate effect of photosynthesis on oxygen concentration. Can J Zool 64:1586–1588

    Article  Google Scholar 

  • Banta AM, Gortner RA (1914) A milky white amphibian egg jelly. Biol Bull 27:259–261

    CAS  Article  Google Scholar 

  • Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P (2008) Oddities and curiosities of the algal world. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) Algal Toxins: Nature, Occurrence, Effect and Detection. Springer Science, pp 353–391.

  • Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834

    PubMed  CAS  Article  Google Scholar 

  • Biebel P (1969) Use of physiological and biochemical characteristics in distinguishing chlamydonomad algae associated with amphibian egg membranes. Int Bot Cong Abstr 11:15

    Google Scholar 

  • Bishop S (1941) Salamanders of New York. N Y State Mus Bull 324:1–365

    Google Scholar 

  • Blaustein AR, Kiesecker JM, Chivers DM, Anthony RG (1997) Ambient UV-B radiation causes deformities in amphibian embryos. Proc Natl Acad Sci U S A 94:13735–13737

    PubMed  CAS  Article  Google Scholar 

  • Branch LC, Taylor DH (1977) Physiological and behavioral responses of larval spotted salamanders (Ambystoma maculatum) to various concentrations of oxygen. Comp Biochem Physiol 58A:269–274

    Article  Google Scholar 

  • Breder R (1927) The courtship of the spotted salamander. Bull New York Zool Soc 30:51–56

    Google Scholar 

  • Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microb 8:218–230

    CAS  Article  Google Scholar 

  • Brodman R (1995) Annual variation in breeding sucess of two syntopic species of Ambystoma salamanders. J Herpetol 29:111–113

    Article  Google Scholar 

  • Brucker R, Harris R, Schwantes C, Gallaher T, Flaherty D, Lam B, Minbiole K (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429

    PubMed  CAS  Article  Google Scholar 

  • Buckland-Nicks J, Chia FS, Behrens S (1973) Oviposition and development of two intertidal snails, Littorina sitkana and Littorina scutulata. Can J Zool 51:359–365

    Article  Google Scholar 

  • Burggren WW (1985) Gas, exchange, metabolism, and ‘ventilation’ in gelatinous frog egg masses. Physiol Zool 58:503–514

    Google Scholar 

  • Carl GC, Cowan IM (1945) Notes on the salamanders of British Columbia. Copeia 1945:43–44

    Article  Google Scholar 

  • DeMartini E (1978) Spatial aspects of reproduction in buffalo sculpin, Enophrys bison. Env Biol Fish 3:331–336

    Article  Google Scholar 

  • Douglas A (2010) The symbiotic habit. Princeton University Press, Princeton

    Google Scholar 

  • Epel D, Gilbert SF (2008) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Ettl H (1961) Zwei neue Chlamydomonaden. Arch Protistenk Bd 105:273–284

    Google Scholar 

  • Felsenstein J (2004) Inferring Phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Gatz J (1973) Algal entry into the eggs of Ambystoma maculatum. J Herpetol 7:137–138

    Article  Google Scholar 

  • Gilbert PW (1942) Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes. Ecology 23:215–227

    Article  Google Scholar 

  • Gilbert PW (1944) The alga-egg relationship in Ambystoma maculatum, a case of symbiosis. Ecology 25:366–369

    Article  Google Scholar 

  • Gilhen J (1984) Amphibians and reptiles of Nova Scotia. Nova Scotia Museum, Halifax

    Google Scholar 

  • Goff L, Stein J (1976) Preliminary studies on the green alga Oophila in salamander egg masses. J Phycol 12(suppl):23

    Google Scholar 

  • Goff L, Stein JR (1978) Ammonia: basis for algal symbiosis in salamander egg masses. Life Sci 22:1463–1468

    PubMed  CAS  Article  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Graham L, Graham J, Wilcox L (2009) Algae, 2nd Edition. Benjamin Cummings (Pearson), San Francisco

    Google Scholar 

  • Gregg JR, Ballentine R (1946) Nitrogen metabolism of Rana pipiens during embryonic development. J Exp Zool 103:143–168

    PubMed  CAS  Article  Google Scholar 

  • Greven H (2003) Oviduct and egg-jelly. In: Sever D (ed) Reproductive biology and phylogeny of the Urodela. Science Publishers Inc., Enfield, pp 151–181

    Google Scholar 

  • Hammen C, Hutchison V (1962) Carbon dioxide assimilation in the symbiosis of the salamander Ambystoma maculatum and the algae Oophila amblystomatis. Life Sci 1:527–532

    CAS  Article  Google Scholar 

  • Hardy LM, Lucas C (1991) A crystalline protein is responsible for dimorphic egg jellies in the spotted salamander, Ambystoma maculatum (Shaw) (Caudata Ambystomatidae). Comp Biochem Physiol 100A:653–660

    CAS  Article  Google Scholar 

  • Harrison R (1969) Harrison stages and description of normal development of the spotted salamander, Ambystoma punctatum (Linn). In: Wilens S (ed) Organization and development of the embryo. Yale University Press, New Haven, pp 44–66

    Google Scholar 

  • Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A 107:4612–4617

    PubMed  CAS  Article  Google Scholar 

  • Henry WV, Twitty VC (1940) Contributions to the life histories of Dicamptodon ensatus and Ambystoma gracile. Copeia 1940:247–250

    Article  Google Scholar 

  • Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc Lond B 271:509–515

    CAS  Article  Google Scholar 

  • Hutchison V (1971) On the Ambystoma egg-alga relationship. Herp Rev 3:82

    Google Scholar 

  • Hutchison V, Hammen C (1958) Oxygen utilization in the symbiosis of embryos of the salamander, Ambystoma maculatum and the alga, Oophila amblystomatis. Biol Bull Mar Biol Lab Woods Hole 115:483–489

    Article  Google Scholar 

  • Jones TR, Kluge AG, Wolf AJ (1993) When theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst Biol 42:92–102

    Google Scholar 

  • Kerney R, Kim E, Hangarter RP, Heiss AA, Bishop CD, Hall BK (2011) Intracellular invasion of green algae in a salamander host. Proc Natl Acad Sci U S A 108:6497–6502

    PubMed  CAS  Article  Google Scholar 

  • Kuzmin V, Tkach V, Snyder S (2001) Rhabdias ambystomae sp. n. (Nematoda: Rhabdiasidae) from the North American spotted salamander Ambystoma maculatum (Ambystomatidae). Comp Parasit 68:228–235

    Google Scholar 

  • Lauer A, Simon M, Banning J, André E, Duncan K, Harris R (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 2007:630–640

    Article  Google Scholar 

  • Lee W, Lagios M, Leonards R (1975) Wound infection by Prototheca wickerhamii, a saprophytic alga pathogenic for man. J Clin Microbiol 2:62–66

    PubMed  CAS  Google Scholar 

  • Lewin RA, Robinson PT (1979) The greening of polar bears in zoos. Nature 278:445–447

    PubMed  CAS  Article  Google Scholar 

  • Ling R, Wener J (1988) Mortality in Ambystoma maculatum larvae due to Tetrahymena infection. Herp Rev 19:26–27

    Google Scholar 

  • Marco A, Blaustein A (2000) Symbiosis with green algae affects survival and growth of Northwestern salamander embryos. J Herpetol 34:617–621

    Article  Google Scholar 

  • Miller D, Geibel J (1973) Summary of blue rockfish and lingcod life histories; a reef ecology study; and giant kelp, Macrocystis pyrifera, experiments in Monterey Bay, California. Fish Bull 158:51–77

    Google Scholar 

  • Mills NE, Barnhart MC (1999) Effects of hypoxia on embryonic development in two Ambystoma and two Rana species. Physiol Biochem Zool 72:178–188

    Article  Google Scholar 

  • Olivier HM, Moon BR (2010) The effects of atrazine on spotted salamander embryos and their symbiotic alga. Ecotoxicology 19:654–661

    PubMed  CAS  Article  Google Scholar 

  • Orr H (1888) Note on the development of amphibians, chiefly concerning the central nervous system; with additional observations on the hypophysis, mouth, and the appendages and skeleton of the head. Quart J Micro Sci N S 115:483–489

    Google Scholar 

  • Patch CL (1922) Some amphibians and reptiles from British Columbia. Copeia 1922:74–79

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Peyton K, Hanisak M, Lin J (2004) Marine algal symbionts benefit benthic invertebrate embryos deposited in gelatinous egg masses. J Exp Mar Biol Ecol 307:139–164

    Article  Google Scholar 

  • Pinder A, Friet S (1994) Oxygen transport in egg masses of the amphibians Rana sylvatica and Ambystoma maculatum: convection, diffusion and oxygen production by algae. J Exp Biol 197:17–30

    PubMed  Google Scholar 

  • Printz H (1928) Chlorophyceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol 3. W. Engelmannl 1924-, Leipzig, pp 1–463.

  • Rankin J (1937) An ecological study of the parasites of some North Carolina salamanders. Evol Monogr 7:169–269

    Article  Google Scholar 

  • Rohr JR, Elskus AA, Shepherd BS, Crowley PH, McCarthy TM, Niedzwiecki JH, Sager T, Sih A, Palmer BD (2004) Multiple stressors and salamanders: effects of an herbicide, food limitation, and hydroperiod. Ecol App 14:1028–1040

    Article  Google Scholar 

  • Ruth B, Dunson W, Rowe C, Hedges S (1993) A molecular and functional evaluation of the egg mass color polymorphism of the spotted salamander: Ambystoma maculatum. J Herpetol 27:306–314

    Article  Google Scholar 

  • Sacerdote AB, King RB (2009) Dissolved oxygen requirements for hatching sucess of two ambystomatid salamanders in restored ephemeral ponds. Wetlands 29:1202–1213

    Article  Google Scholar 

  • Salthe S (1963) The egg capsules in the amphibia. J Morphol 113:161–171

    PubMed  CAS  Article  Google Scholar 

  • Selosse M-A (2000) Un exemple de symbiose algue-invertébré à Belle-Isle-en-Mer: la planaire Convoluta roscoffensis et la prasinophycée Tetraselmis convolutae. Acta Bot Gall 147:323–331

    Google Scholar 

  • Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707

    PubMed  CAS  Article  Google Scholar 

  • Seymour R, Roberts J (1991) Embryonic respiration and oxygen distribution in foamy and nonfoamy egg masses of the frog Limnodynastes tasmaniensis. Physiol Zool 64:1322–1340

    Google Scholar 

  • Seymour RS, Bradford DF (1995) Respiration of amphibian eggs. Physiol Zool 68:1–25

    Google Scholar 

  • Shaffer HB, Clark JM, Kraus F (1991) When molecules and morphology clash: a phylogenetic analysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst Zool 40:284–303

    Article  Google Scholar 

  • Shudert E (2003) Nonmotile coccoid and colonial green algae. In: Wehr TD, Sheath RG (eds) Freshwater Algae of North America. Academic, New York, pp 253–307

    Google Scholar 

  • Storer TI (1925) A synopsis of the amphibia of California. Univ Cal Pub Zool 27:1–342

    Google Scholar 

  • Tattersall G, Spiegelaar N (2008) Embryonic motility and hatching success of Ambystoma maculatum are influenced by a symbiotic alga. Can J Zool 86:1289–1298

    Article  Google Scholar 

  • Valls JH, Mills NE (2007) Intermittent hypoxia in eggs of Ambystoma maculatum: embryonic development and egg capsule conductance. J Exp Biol 210:2430–2435

    PubMed  Article  Google Scholar 

  • Venn A, Loram J, Douglas A (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    PubMed  CAS  Article  Google Scholar 

  • Ward D, Sexton O (1981) Anti-predator role of salamander egg membranes. Copeia 1981:724–726

    Article  Google Scholar 

  • Woods HA, Podolsky RD (2007) Photosynthesis drives oxygen levels in macrophyte-associated gastropod egg masses. Biol Bull 213:88–94

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

Thanks to Brian K. Hall for critically reading an earlier draft of this manuscript, and to Lars Crooks for providing the illustration of an adult spotted salamander. This work was funded by an NSERC grant to BKH, and an American Association of Anatomists Postdoctoral Fellowship to RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Kerney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerney, R. Symbioses between salamander embryos and green algae. Symbiosis 54, 107–117 (2011). https://doi.org/10.1007/s13199-011-0134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-011-0134-2

Keywords

  • Salamanders
  • Green algae
  • Symbiosis
  • Endosymbiosis
  • Mutualism
  • Ambystoma