Skip to main content
Log in

Potential for endophyte symbiosis to increase resistance of the native grass Poa alsodes to invasion by the non-native grass Microstegium vimineum

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Microbial symbionts can improve the competitive ability and stress tolerance of plant hosts and thus may enhance native plant resistance against invaders. We investigated whether symbiosis between a native grass, Poa alsodes, and a fungal endophyte (Neotyphodium sp.) improved the grass’s ability to compete against Microstegium vimineum (Japanese stiltgrass), a common invader in the eastern USA. We challenged naturally endophyte-symbiotic and experimentally endophyte-free P. alsodes plants with the invader. In the first experiment, we manipulated symbiosis and water availability to test for context-dependency in symbiont benefits. In the second experiment, we manipulated symbiosis and M. vimineum diversity (the number of invader populations), since greater intraspecific diversity is expected to improve invasion success and might alter the efficacy of symbiosis in invasion resistance. In both experiments, presence of the endophyte reduced the per plant biomass of M. vimineum and increased P. alsodes biomass. We found no evidence that benefits of the symbiont depended on water availability, and population-level diversity had a minor influence on M. vimineum: inflorescence number showed a parabolic relationship with increasing numbers of M. vimineum populations. Overall, symbiosis in the native grass had stronger effects on invader growth than either water availability or invader genetic diversity. Our results suggest that endophyte symbioses in native plants can increase host performance against an invader, although this conclusion needs confirmation in more complex field settings where other important factors, such as herbivores and fluctuating abiotic conditions, come into play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1

Similar content being viewed by others

References

  • Adams SN, Engelhardt KAM (2009) Diversity declines in Microstegium vimineum (Japanese stiltgrass) patches. Biol Conserv 142(5):1003–1010. doi:10.1016/j.biocon.2009.01.009

    Article  Google Scholar 

  • Ahlroth P, Alatalo RV, Holopainen A, Kumpulainen T, Suhonen J (2003) Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia 137(4):617–620. doi:10.1007/s00442-003-1344-y

    Article  PubMed  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  • Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC, Boca Raton, pp 47–56

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Barbosa P, Krischik VA, Jones CG (1991) Microbial mediation of plant-herbivore interactions. Wiley, New York

    Google Scholar 

  • Barden LS (1987) Invasion of Microstegium vimineum (Poaceae), an exotic, annual, shade-tolerant, C4 grass, into a North Carolina floodplain. Am Midl Nat 118(1):40–45

    Article  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8(2):217–230. doi:10.1007/s10530-004-3856-8

    Article  Google Scholar 

  • Belote RT, Weltzin JF (2006) Interactions between two co-dominant, invasive plants in the understory of a temperate deciduous forest. Biol Invasions 8(8):1629–1641. doi:10.1007/s10530-005-3932-8

    Article  Google Scholar 

  • Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE (2004) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85(4):1062–1071

    Article  Google Scholar 

  • Cheplick GP (2008) Growth trajectories and size-dependent reproduction in the highly invasive grass Microstegium vimineum. Biol Invasions 10(5):761–770. doi:10.1007/s10530-007-9170-5

    Article  Google Scholar 

  • Cheplick GP, Faeth S (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci USA 102(35):12465–12470

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application published at: http://purl.oclc.org/estimates

  • Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19(6):1253–1263. doi:10.1111/j.1365-294X.2010.04550.x

    Article  PubMed  CAS  Google Scholar 

  • Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 164:431–444

    Article  PubMed  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17(1):431–449

    Article  PubMed  CAS  Google Scholar 

  • Droste T, Flory SL, Clay K (2010) Variation for phenotypic plasticity among populations of an invasive exotic grass. Plant Ecol 207(2):297–306. doi:10.1007/s11258-009-9673-5

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Ehrenfeld JG, Kourtev P, Huang WZ (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11(5):1287–1300

    Article  Google Scholar 

  • Fairbrothers DE, Gray JR (1972) Microstegium vimineum (Trin) a-Camus (Gramineae) in United-States. Bull Torrey Bot Club 99(2):97–100

    Article  Google Scholar 

  • Flory SL (2010) Management of Microstegium vimineum invasions and recovery of resident plant communities. Restor Ecol 18(1):103–112. doi:10.1111/j.1526-100X.2008.00425.x

    Article  Google Scholar 

  • Flory SL, Clay K (2009) Invasive plant removal method determines native plant community responses. J Appl Ecol 46(2):434–442. doi:10.1111/j.1365-2664.2009.01610.x

    Article  Google Scholar 

  • Flory SL, Clay K (2010) Non-native grass invasion alters native plant composition in experimental communities. Biol Invasions 12(5):1285–1294. doi:10.1007/s10530-009-9546-9

    Article  Google Scholar 

  • Flory SL, Rudgers JA, Clay K (2007) Experimental light treatments affect invasion success and the impact of Microstegium vimineum on the resident community. Nat Areas J 27(2):124–132

    Article  Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14(14):4275–4285. doi:10.1111/j.1365-294X.2005.02750.x

    Article  PubMed  CAS  Google Scholar 

  • Gleason HA, Cronquist A (1991) Manual of vascular plants of Northeastern United States and adjacent Canada. New York Botanical Garden, Bronx

    Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8(9):976–985. doi:10.1111/j.1461-0248.2005.00802.x

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11(6):609–623. doi:10.1111/j.1461-0248.2008.01179.x

    Article  PubMed  Google Scholar 

  • Hunt DM, Zaremba RE (1992) The northeastward spread of Microstegium vimineum (Poaceae) into New York and adjacent states. Rhodora 94(878):167–170

    Google Scholar 

  • Huston MA, McBride AC (2002) Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 47–60

    Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Summary for policy makers. Intergovernmental Panel on Climate Change, Geneva, Switzerland

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135(4):575–586

    Article  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22(4):706–713. doi:10.1111/j.1365-2435.2008.01395.x

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70

    Article  PubMed  CAS  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431(7005):177–181. doi:10.1038/nature02807

    Article  PubMed  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11):3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35(7):895–905. doi:10.1016/s0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7(10):975–989. doi:10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (2003) The effects of exotic grasses on litter decomposition in a Hawaiian woodland: the importance of indirect effects. Ecosystems 6(8):723–738. doi:10.1007/s10021-003-0119-y

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710

    Article  Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8(4):450–456. doi:10.1016/j.pbi.2005.05.007

    Article  PubMed  Google Scholar 

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288(1–2):81–90. doi:10.1007/s11104-006-9091-6

    Article  CAS  Google Scholar 

  • Oswalt CM, Oswalt SN, Clatterbuck WK (2007) Effects of Microstegium vimineum (Trin.) A. Camus on native woody species density and diversity in a productive mixed-hardwood forest in Tennessee. For Ecol Manage 242(2–3):727–732. doi:10.1016/j.foreco.2007.02.008

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288. doi:10.1016/j.ecolecon.2004.10.002

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75(1):65–93

    Article  PubMed  CAS  Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144(3):463–471

    Article  PubMed  Google Scholar 

  • SAS Institute Inc (2009) SAS version 9.1.3. SAS Institute, Cary, North Carolina, USA

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68(7):980–996

    Article  PubMed  CAS  Google Scholar 

  • Schramm JW, Ehrenfeld JG (2010) Leaf litter and understory canopy shade limit the establishment, growth and reproduction of Microstegium vimineum. Biol Invasions 12(9):3195–3204

    Article  Google Scholar 

  • Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90(4):1055–1062

    Article  PubMed  Google Scholar 

  • Siegel MR, Johnson MC, Varney DR, Nesmith WC, Buckner RC, Bush LP, Burrus PB II, Jones TA, Boling JA (1984) A fungal endophyte in tall fescue [Festuca arundinacea]: incidence and dissemination. Phytopathology 74(8):932–937

    Article  Google Scholar 

  • Simao MCM, Flory SL, Rudgers JA (2010) Experimental plant invasions reduces arthropod abundance and richness across multiple trophic levels. Oikos 119(10):1553–1562. doi:10.1111/j.1600-0706.2010.18382.x

    Article  Google Scholar 

  • Simberloff D (1996) Impacts of introduced species in the United States. Consequences 2(2):13–23

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):727–731. doi:10.1371/journal.pbio.0040140

    Article  CAS  Google Scholar 

  • Touchette BW, Romanello GA (2010) Growth and water relations in a central North Carolina population of Microstegium vimineum (trin.) a. Camus. Biol Invasions 12(4):893–903. doi:10.1007/s10530-009-9510-8

    Article  Google Scholar 

  • USDA-NRCS UDoAaN (2009) The PLANTS database. National Plant Data Center. http://plants.usda.gov. Accessed 12 May 2009

  • Vellend M, Drummond EBM, Tomimatsu H (2010) Effects of genotype identity and diversity on the invasiveness and invasibility of plant populations. Oecologia 162(2):371–381. doi:10.1007/s00442-009-1480-0

    Article  PubMed  Google Scholar 

  • Welty RE, Azevedo MD, Cooper TM (1987) Influence of moisture content, temperature, and length of storage on seed germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 77(6):893–900

    Article  Google Scholar 

  • Weltzin JF, Muth NZ, Von Holle B, Cole PG (2003) Genetic diversity and invasibility: a test using a model system with a novel experimental design. Oikos 103(3):505–518

    Article  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14(4):569–580. doi:10.1111/j.1472-4642.2008.00473.x

    Article  Google Scholar 

  • Winter K, Schmitt MR, Edwards GE (1982) Microstegium vimineum, a shade-adapted C4 grass. Plant Sci Lett 24(3):311–318

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Rice University Funds, by NSF DEB 0716868 to K.D.W., by NSF DEB 0542781 to J.A.R, and by JFSP 08-1-2-01 to S.L.F. Thanks to members of the Rudgers and Whitney Labs for discussion and advice, and to D., D. and G. Whitney for collection permissions in Vermont.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Rudgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, S., Kannadan, S., Flory, S.L. et al. Potential for endophyte symbiosis to increase resistance of the native grass Poa alsodes to invasion by the non-native grass Microstegium vimineum . Symbiosis 53, 17–28 (2011). https://doi.org/10.1007/s13199-010-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0102-2

Keywords

Navigation