Skip to main content

Advertisement

Log in

Salt tolerance of nitrogen fixation in Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In this study, the effect of 100 mM NaCl on physiological and biochemical responses were investigated in nodules of two Medicago ciliaris lines differing in salt tolerance (TNC 1.8 and TNC 11.9). Results showed that, on the basis of growth and nitrogen fixation, the line TNC 1.8 proved more salt tolerant than TNC 11.9. The salt-induced oxidative stress (membrane lipid peroxidation, leghemoglobin degradation, antioxidant activities reduction) occurred similarly in nodules of both lines. The tolerant line TNC 1.8 showed a better capacity to preserve higher sucrolytic activities and maintained higher nodule malate concentration, although total organic acids decreased in both lines. The higher amount of organic acids in the tolerant line seems to be related to its capacity to maintain higher NH4 nodule concentration in comparison with the sensitive line. Although salt stress reduced concentrations of the majority of amino acid in both lines, the decrease of the most preponderant amino acids glycine, valine, aspartate and glutamate was more accentuated in the sensitive line TNC 11.9. However, alanine concentration increased in the nodules of this sensitive line, suggesting a higher incidence of stress-induced hypoxia. The present study provides further evidence that salt tolerance of nitrogen fixation in the tolerant line is linked to a more effective supply of malate to bacteroids which allows the synthesis of amino acids required to maintain both plant and nodule growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd-Alla MH, El-Enamy AE, Hamada AM, Abdel Wahab AM (2001) Element distribution in faba bean nodules under salinity and its effects on growth, nodulation and nitrogen fixation. Rostlinná Výroba 47:399–404

    CAS  Google Scholar 

  • Appels MA, Haaker H (1991) Glutamate oxaloacetate transaminase in pea root nodules 1 Participation in a malate/aspartate shuttle between plant and bacteroid. Plant Physiol 95:740–747

    Google Scholar 

  • Arrese-Igor C, Gonzalez EM, Gordon AJ, Minchin FR, Galvez L, Royuela M, Cabrerizo PM, Aparicio-Tejo PM (1999) Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis 27:189–212

    CAS  Google Scholar 

  • Ashraf M, Bashir A (2003) Salt induced changes in some organic metabolites and ionic relations in nodules and other parts of two crop plants differing in salt tolerance. Flora 198:486–498

    Google Scholar 

  • Baier MC, Barsch A, Küster H, Hohnjec N (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600–1618

    Article  CAS  PubMed  Google Scholar 

  • Balibrea ME, Cayuela E, Artés F, Pérez-Alfocea F (1997) Salinity effects on some post-harvest quality factors in a commercial tomato hybrid. J Hortic Sci 72:885–892

    Google Scholar 

  • Balibrea ME, Cuartero J, Bolarín MC, Pérez-Alfocea F (2003) Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiol Plant 118:38–46

    Article  CAS  PubMed  Google Scholar 

  • Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martinez V, Pérez-Alfocea F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress. J Plant Physiol 166:477–488

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Borucki W, Sujkowska M (2008) The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiol Plant 30:293–301

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principal of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    Article  CAS  PubMed  Google Scholar 

  • El-Hamdaoui A, Redondo-Nieto M, Torralba B, Rivella R, Bonilla I, Bolaños L (2003) Influence of boron and calcium on the tolerance to salinity of nitrogen fixing pea plants. Plant Soil 251:93–103

    Article  CAS  Google Scholar 

  • Fan TW-M, Higashi RM, Frenkiel TA, Lane AN (1997) Anaerobic nitrate and ammonium in flood-tolerant rice coleoptiles. J Exp Bot 48:1655–1666

    CAS  Google Scholar 

  • Fougère F, Le Rudulier D, Streeter JG (1991) Effects of salt Stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed  Google Scholar 

  • Fries N (1953) Limiting factors in the growth of the pea seedling root. Physiol Plant 6:292–300

    Article  CAS  Google Scholar 

  • Gálvez S, Hirsh AM, Wycoff KL, Hunt S, Layzell DB, Kondorosi A, Crespi M (2000) Oxygen regulation of a nodule-located carbonic anhydrase in alfalfa. Plant Physiol 124:1059–1068

    Article  PubMed  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Godel H, Seitz P, Verhoef M (1987) Automated analysis using combined OPA and FMOC-CI precolumn derivatization. LC-LG International 5:44–49

    Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–877

    Article  CAS  PubMed  Google Scholar 

  • Hardy WFR, Holsten R, Jackson E, Burns E (1968) The acetylene ethylene assay for nitrogen fixation: lab and field assay for nitrogen evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed  Google Scholar 

  • Hoffman NE, Bent AF, Hanson AD (1986) Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiol 82:658–663

    Article  CAS  PubMed  Google Scholar 

  • Jamet A, Sigaud S, Van de Sype G, Puppo A, Herouart D (2003) Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16:217–225

    Article  CAS  PubMed  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    Article  CAS  PubMed  Google Scholar 

  • Kjeldahl JZ (1983) New methode zyr Besimming des stickstoffs in organischen Körpen. J Anal Chem 22:366–382

    Google Scholar 

  • Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78

    Article  CAS  Google Scholar 

  • López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2001) Plant nutrients. In: Dordrecht (ed.). Principles of plant nutrition, pp 1–14

  • Minchin FR, Witty JF (2005) Respiratory/carbon costs of symbiotic nitrogen fixation in legumes. In: Lambers H, Ribas-Carbo M (ed.) Plant respiration, pp 195–205

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi AC, Jouanin L, Valadier MH, Roux Y, Foyer CH (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiol Plant 100:255–263

    Article  CAS  Google Scholar 

  • O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agr 41:417–433

    Article  Google Scholar 

  • Oliva SR, Raitio H, Mingorance MD (2003) Comparison of two wet digestion procedures for multielement analysis of plant samples. Communications in Soil Science and Plant Analysis 34:2913–2923

    Google Scholar 

  • Pelleschi S, Rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ 20:493–503

    Article  CAS  Google Scholar 

  • Pladys D, Dimitrijevic L, Rigaud J (1991) Localization of a protease in protoplast preparations in infected cells of French bean nodules. Plant Physiol 97:1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Halliwell B (1988) Generation of hydroxyl radicals by soybean nodule leghemoglobin. Planta 173:405–410

    Article  CAS  Google Scholar 

  • Ramos MLG, Gordon AJ, Minchin FR, Sprint JI, Parsons R (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 83:57–63

    Article  CAS  Google Scholar 

  • Reggiani R, Cantu CA, Brambilla I, Bertani A (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol 29:982–987

    Google Scholar 

  • Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ringli C, Keller B, Ryser U (2001) Glycine-rich proteins as structural components of plant cell walls. Mol Life Sci 58:1430–1441

    Article  CAS  Google Scholar 

  • Sakano K, Tazawa M (1984) Intracellular distribution of free amino acids between the vacuolar and extravacuolar compartments in internodal cells of Chara australis. Plant Cell Physiol 25:1477–1486

    CAS  Google Scholar 

  • Sakano K, Tazawa M (1985) Metabolic conversion of amino acids loaded in the vacuole of Chara australis intemodal cells. Plant Physiol 78:673–677

    Article  CAS  PubMed  Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (1999) Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: responses to cold acclimation. J Plant Physiol 55:762–768

    Google Scholar 

  • Serraj R, Fleurat-Lessard P, Jaillard B, Drevon JJ (1995) Structural changes in the inner-cortex cells of soybean root nodules are induced by short-term exposure to high salt or oxygen concentrations. Plant Cell Environ 18:455–462

    Article  CAS  Google Scholar 

  • Skinner JC, Street HE (1953) Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53:44–67

    Article  Google Scholar 

  • Soussi M, Lluch C, Ocaña A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708

    Article  CAS  Google Scholar 

  • Srinivas ND, Rshami KR, Raghavarao KSMS (1999) Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochem 35:43–48

    Article  CAS  Google Scholar 

  • Streeter JG, Thompson JF (1972) Anaerobic accumulation of g-aminobutyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol 49:572–578

    Article  CAS  PubMed  Google Scholar 

  • Trinchant JC, Rigaud J (1996) Bacteroid oxalate oxidase and soluble oxalate in nodules of faba beans (Vicia faba L.) submitted to water restricted conditions: possible involvement in nitrogen fixation. J Exp Bot 47:1865–1870

    Article  CAS  Google Scholar 

  • Tyerman SD, Whitehead LF, Day DA (1995) A channel-like transport for NH +4 on the symbiotic interface of N2-fixing plants. Nature 387:629–632

    Article  Google Scholar 

  • Vance CP, Gantt JS (1992) Control of nitrogen and carbon metabolism in root nodules. Physiol Plant 85:266–274

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weatherburn MW (1979) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  Google Scholar 

  • White PR (1939) Glycine in the nutrition of excised tomato roots. Plant Physiol 14:527–538

    Article  CAS  PubMed  Google Scholar 

  • Wilson DO, Reisenauer HM (1963) Determination of leghemoglobin in legume nodules. Anal Biochem 6:27–30

    Article  CAS  Google Scholar 

  • Zadeh HM, Naeini MB (2007) Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). J Agr 6:409–414

    Article  Google Scholar 

  • Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro ML (2008) Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Env Exp Bot 64:83–89

    Article  CAS  Google Scholar 

  • Zribi K, Badri Y, Saidi S, van Berkum P, Aouani ME (2007) Medicago ciliaris growing in Tunisian soils is preferentially nodulated by Sinorhizobium medicae. Aust J Soil Res 45:473–477

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Tunisian Ministry of Higher Education, Scientific Research and Technology (LR10CBBC02) and by the Fundación Séneca (Communidad Autónoma de Murcia, Spain, project 08712/PI/08). We wish to thank the Laboratory of Legumes (LL) in the Center of Biotechnologies at the technopole of Borj Cedria in Tunis for the generous gift of Sinorhizobium medicae CI 1.12/E22 strain and M. ciliaris seeds. Grateful thanks are due to anonymous reviewers for their constructive comments and for thorough editorial remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imène Ben Salah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Salah, I., Slatni, T., Albacete, A. et al. Salt tolerance of nitrogen fixation in Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system. Symbiosis 51, 187–195 (2010). https://doi.org/10.1007/s13199-010-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0073-3

Keywords

Navigation