Abstract
This study was performed to assess the N2-fixing capability of the native actinorhizal species Ochetophila trinervis (sin. Discaria trinervis) and Discaria chacaye (Rhamnaceae) in Northwest Patagonia. We measured the N concentration and 15N natural abundance in leaves and nodules of O. trinervis and D. chacaye, in leaves of associated non-actinorhizal vegetation, and in the soils under each sampled plant. O. trinervis and D. chacaye had foliar N concentrations that were about twice that of non-actinorhizal shrubs growing at the same sites, even though soils varied four-fold in total N across the sites. Leaves of both actinorhizal plants had a similar δ15N at any site and were close to atmospheric values. The foliar δ15N of non-actinorhizal plants and soil δ15N were strongly correlated across the sites. Nodules were depleted in δ15N relative to the foliage of the respective actinorhizal species. In conjunction with the uniformly high foliage N concentration of these actinorhizal plants and the universal presence of vesicles observed in root nodules, these data strongly suggest that O. trinervis and D. chacaye obtain a significant amount of their N from N2 fixation. To calculate the proportion of N derived from atmosphere, theoretical B-values were estimated. In all cases where the δ15N of fixing and reference foliage were significantly different, O. trinervis and D. chacaye obtained almost all of their N from N2 fixation. These results are the first to demonstrate N2 fixation by O. trinervis and D. chacaye in the field and therefore suggest an important role for these actinorhizal plants in the N economy of ecosystems in northwest Patagonia as well as their potential use for restoration of degraded lands in this region.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- N:
-
nitrogen
- pNdfa:
-
proportion of N derived from atmosphere
References
Aagesen L (1999) Phylogeny of the tribe Colletieae, Rhamnaceae. Botanical Journal of the Linnean Society 131:1–43
Balboa O (1989) Actividad nodular in situ de los nódulos actinorrícicos de Talguenea quinquenervia (Rhamnaceae) en el matorral chileno. Boletin de la Sociedad Argentina de Botánica: 26:53–57
Barros V, Cordon VH, Moyano CL, Mendez RJ, Forquera JC, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Universidad Nacional del Comahue, Argentina
Binkley D, Sollins P, McGill WB (1985) Natural abundance of nitrogen-15 as a tool for tracing alder fixed nitrogen. Soil Science Society of America Journal 49:444–447
Boddey. R.M., Peoples, M.B., Palmer, B., and Dart, P.J (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation in woody perennials. Nutrient Cycling in Agroecosystems 57:235–270
Busse MD (2000a) Suitability and use of the 15N-isotope dilution method to estimate nitrogen fixation by actinorhizal shrubs. Forest Ecology and Management 136:85–95
Busse, M.D. 2000b. Ecological significance of nitrogen fixation by actinorhizal shrubs in interior forests of California and Oregon. USDA Forest Service Gen. Tech. Rep. PSW-GTR-178.
Busse MD, Jurgensen MF, Page-Dumroese DS, Powers RF (2007) Contribution of actinorhizal shrubs to site fertility in a Northern California pine forest. Forest Ecology and Management 244:68–75
Chaia E (1993) Caracterización morfo-anatómica y desarrollo estacional de nódulos actinorrícicos en Colletia hystrix y Discaria chacaye. Revista de la Facultad de Agronomía, La Plata 69:43–50
Chaia, E.E. 1997. La simbiosis actinorrícica en las Rhamanceas del Parque y Reserva Nacional Nahuel Huapi. Doctoral Thesis, Universidad Nacional de La Plata. Argentina
Chaia E (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant and Soil 205:99–102
Chaia E, Vobis G (2000) Seasonal change of the actinorhizal nodules and the movement of N in Discaria trinervis. In: Pedrosa FO, Hungria M, Geoffrey Yates M, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, p 469
Chaia EE, Valverde C, Wall LG (2006) Local adaptation of Frankia isolates to different Discaria (Rhamnaceae) host species growing in Patagonia. Current Microbiology 53:523–528
Damascos, M.A. 2008. La rosa mosqueta y otras rosas. Imprenta Bavaria. Río Negro. ISBN 978-987-05-5427-1. 64 pp
Domenach AM, Kurdali F, Daniere C, Bardin R (1988) Determination de l’identité isotopique de l’azote fixé par Frankia associé au genre Alnus. Canadian Journal of Botany 66:1241–1247
Domenach AM, Kurdali F (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant and Soil 118:51–59
Dzendoletas MA, Havrylenko M, Crivelli E (2003) Fenología de plantas en Puerto Blest, Parque Nacional Nahuel Huapi, Patagonia, Argentina. Ecología 17:87–98
Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8:29–33
Fontenla S, Puntieri J, Ocampo JA (2001) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant and Soil 233:13–29
Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytologist 137:179–203
Hurd TM, Raynal DJ, Schwintzer CR (2001) Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adironack, New York, USA. Oecologia 126:94–103
Kellermann J, Medan D, Aagesen L, Hilger HH (2005) Rehabilitation of the South American genus Ochetophila Poepp. ex Endl. (Rhamnaceae: Colletiae). New Zealand Journal of Botany 43:865–869
Kurdali F, Domenach AM, Bouvarel L, Moiroud A (1993) Field comparison of δ15N values and growth of alder provenances and species. Soil Science and Plant Nutrition 39:635–643
Markham JH, Chanway CP (1999) Does past contact reduce the degree of mutualism in the Alnus rubra-Frankia symbiosis? Canadian Journal of Botany 77:434–441
Marticorena, C., and Rodríguez, R. (eds). 2005. Flora de Chile. Vol 2(3). Ed. Universidad de Concepción, Concepción. 128 pp. ISBN 956-227-251-6
Martín CE, Chehébar C (2001) The national parks of Argentinian Patagonia – management policies for conservation, public use, rural settlements, and indigenous communities. Journal of The Royal Society of New Zealand 31:845–864
Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonia ecosystems. Ecología Austral 8:167–181
Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems in closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418
Mueller-Dombois D, Ellemberg H (1974) Aims and Methods of Vegetation Ecology. J. Wiley and Sons, New York, 547 pp
Muñoz EA, Garay A (1985) Caracterización climática de la provincia de Río Negro. INTA Estación Experimental, Región Agropecuaria de San Carlos de Bariloche, 58 pp
Myrold DD, Huss-Danell K (2003) Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant and Soil 254:47–56
Nuñez MA, Raffaele E (2007) Afforestation causes changes in post-fire regeneration in native shrubland communities of northwetern Patagonia, Argentina. Journal of Vegetation Science 18:827–834
Shearer G, Kohl DH (1989) Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer Verlag, Berlin, pp 342–374
Silvester WB, Balboa O, Martinez JA (1985) Nodulation and nitrogen fixation in members of the Rhamnaceae (Colletia, Retanilla, Talguenea and Trevoa) growing in the Chilean matorral. Symbiosis 1:29–38
Tjepkema JD, Schwintzer CR, Burris RH, Johnson GV, Silvester WB (2000) Natural abundance of 15N in actinorhizal plants and nodules. Plant and Soil 219:285–289
Tortosa RD (1983) El género Discaria (Rhamnaceae). Boletín de la Sociedad Argentina de Botánica 22:301–335
Tortosa RD, Aagesen L, Tourn GM (1996) Morphological studies in the tribe Colletiae (Rhamnaceae): analysis of architecture and inflorescences. Botanical Journal of the Linnean Society 122:353–367
Valverde C, Wall LG (2003) Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant and Soil 254:139–153
Virginia RA, Jarrell WM, Rundel PW, Shearer G, Kohl DH (1989) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PH, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer Verlag, Berlin, pp 375–394
Wolters DJ, Akkermans ADL, Van Dijk C (1997) Ineffective Frankia strains in the wet stands of Alnus glutinosa L. Gaertn in The Netherlands Soil Biology and Biochemistry 29:1707–1712
Yoneyama T, Sasakawa H (1991) Enrichment of natural 15N abundance in Frankia-infected nodules. Soil Science and Plant Nutrition 37:741–743
Yoneyama T, Fujihara S, Yagi K (1998) Natural abundance of 15N in amino acids and polyamines from leguminous nodules: unique 15N enrichment in homospermidine. Journal of Experimental Botany 49:521–526
Acknowledgements
We thank Rockie Yarwood and Maria C. Sosa for technical help. This work was funded by Universidad Nacional del Comahue (Argentina) and supported by the Oregon Agricultural Experiment Station.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chaia, E.E., Myrold, D.D. Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia. Symbiosis 50, 97–105 (2010). https://doi.org/10.1007/s13199-009-0040-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13199-009-0040-z