Skip to main content
Log in

A probabilistic approach to performance analysis of various subsystems in an Indian sugar plant

  • ORIGINAL ARTICLE
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The performance analysis of the evaporation and crystallization unit of a sugar plant is explored in the current study. It is an important unit requiring more concentration to increase its performance. The probabilistic approach is used to formulate the transition diagram of the evaporation and crystallization unit. Then, the first-order differential equations are obtained using the mnemonic rule and further solved recursively. The availability model of the concerned unit is obtained at all full and reduced capacity states. The failure and repair rate values are placed into the developed availability model to determine the decision matrices. It gives the availability levels of different subsystems of the concerned unit. The criticalities of subsystems are based on availability levels mentioned in decision matrices to determine the maintenance priorities. It is observed that the evaporator subsystem is most critical in which the availability increased from 0.7260 to 0.8888, i.e. (16.20%). In contrast, the sugar grader is the least crucial subsystem, with availability enhanced from 0.8740 to 0.8893 (i.e., 1.53%). The results show that the evaporator subsystem must be given top priority, and the sugar grader subsystem must be given the least priority from the maintenance outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal AK, Kumar S, Singh V (2017) Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant. J Ind Eng Int 13:47–58

    Article  Google Scholar 

  • Al Salamah MJ, Shayan E, Savsar M (2006) Reliability analysis of cooling sea water pumping station. Int J Qual Reliab Manag 23(6):670–695

    Article  Google Scholar 

  • Aman KA, Mahna VK, Khanduja R (2019) The performance analysis of a refining system by using Markov process. Int J Mech Prod Eng Res Develop 9(3):525–532

    Google Scholar 

  • Corvaro F, Giacchetta G, Marchetti B, Recanat M (2017) Reliability, availability, maintainability (RAM) study, on reciprocating compressors API 618. Petrolium 3(2):266–272

    Article  Google Scholar 

  • Garg H, Sharma SP (2012) Stochastic behaviour analysis of complex repairable industrial systems utilizing uncertain data. ISA Trans 51(6):752–762

    Article  Google Scholar 

  • Gupta P, Kumar A, Singh J (2004) Numerical analysis of reliability and availability of the serial processes in butter-oil processing. Int J Qual Reliab Manag 22(3):303–316

    Article  Google Scholar 

  • Gupta S, Tewari PC, Sharma AK (2011) Development of simulation model for performance evaluation of water flow system in a typical thermal power plant. J Ind Eng Int 7(12):1–9

    Google Scholar 

  • Gupta A, Tewari PC, Garg RK (2013) Inventory models and their selection parameters: a critical review. Int J Intell Enterprise 2(1):1–20

    Article  Google Scholar 

  • Kajal S, Tewari PC (2014) Performance optimization of a multi-state operating system with hot redundancy. Int J Intell Enterp 2(4):294–310

    Google Scholar 

  • Kajal S, Tewari PC, Kaushik D (2010) Decision support system for butter oil system of a dairy plant at NDRI. IUP J Sci Technol 6(1):63–71

    Google Scholar 

  • Khanduja R, Tewari PC, Kumar D (2009) Steady state behaviour and maintenance planning of the bleaching system in a paper plant. J Ind Eng Int 7(12):39–44

    Google Scholar 

  • Kumar A, Garg R (2016) Decision support system for maximum availability of series-parallel system using particle swarm optimization. Int J Intell Enterp 3(2):148–169

    Google Scholar 

  • Kumar S, Tewari PC (2011) Mathematical modeling and performance optimization of CO2 cooling system of a fertilizer plant. Int J Ind Eng Comput 2(3):689–698

    Google Scholar 

  • Kumar R, Sharma A, Tewari PC (2014) Effect of various pump hot-cold redundancy on availability of thermal power plant subsystems. Int J Intell Enterp 2(4):311–324

    Google Scholar 

  • Kumar P, Tewari PC, Khanduja D (2016) Maintenance priorities for a repairable system of a thermal power plant subject to availability constraint. Int J Performab Eng 12(6):561–572

    Google Scholar 

  • Malik and Tewari (2020) Optimization of coal handling system performability for a thermal power plant using PSO algorithm. Grey Syst Theory Appl 10(3):359–376

    Article  Google Scholar 

  • Nitin Panwar N, Kumar S (2021) Stochastic modelling and performance analysis of feeding unit in paper plant. Int J Math Oper Res 19(3):1757–1771

    Google Scholar 

  • Ramirez-Marquez JE, Coit DW (2004) A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems. Reliab Eng Syst Saf 83(3):341–349

    Article  Google Scholar 

  • Ramirez-Marquez JE, Coit DW (2005) A monte-carlo simulation approach for approximating multi-state two-terminal reliability. Reliab Eng Syst Saf 87(2):253–264

    Article  Google Scholar 

  • Rao S, Naikon VNA (2015) Availability modeling of repairable systems using markov system dynamics simulation. Int J Qual Reliab Manag 32(5):517–531

    Article  Google Scholar 

  • Rauzy A (2004) An experimental study on iterative methods to compute transient solutions of large Markov models. Reliab Eng Syst Saf 86(1):105–115

    Article  Google Scholar 

  • Saini M, Kumar A, Sinwar D (2021) Parameter estimation, reliability and maintainability analysis of sugar manufacturing plant. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01216-6

    Article  Google Scholar 

  • Sharma D, Kumar A, Kumar V, Modgil V (2017) Performance modelling and availability analysis of leaf spring manufacturing industry. Int J Mech Prod Eng 5(1):1–5

    Google Scholar 

  • Wan Y, Huang H, Das D, Pecht M (2016) Thermal reliability prediction and analysis for high-density electronic systems based on the Markov process. Microelectron Reliab 56:182–188

    Article  Google Scholar 

  • Wang G, Duan F, Zhou Y (2018) Reliability evaluation of multi-state series systems with performance sharing. Reliab Eng Syst Saf 173(3):58–63

    Article  Google Scholar 

  • Yu H, Chu C, Chatelet E, Yalaoui F (2007) Reliability optimization of a redundant system with failure dependencies. Reliab Eng Syst Saf 92:1627–1634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhash Malik or Shubham Verma.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Research involving human participants and/or animals informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Equations 1–30

$${{\mathrm{P}}^{\mathrm{^{\prime}}}}_{\mathrm{S}0}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}$$
(1)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}1}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}= {\upmu }_{17}{\mathrm{P}}_{\mathrm{S}6}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}7}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}8}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}9}(\dot{t)} +{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}10}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}$$
(2)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}2}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}11}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}12}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}13}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}14}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}15}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}$$
(3)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}3}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}16}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}17}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}18}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}19}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}20}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}$$
(4)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}4}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}21}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}22}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}23}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}24}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}$$
(5)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}5}(\dot{t)}+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\Phi }_{21}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}28}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}29}(\dot{t)}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}$$
(6)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}6}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}6}(\dot{t)} ={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}$$
(7 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}7}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}7}(\dot{t)}={\Phi }_{14}{\mathrm{P}}_{\mathrm{S}0}(\dot{t)}$$
(8)
$${{\mathrm{P}}^{\mathrm{^{\mathrm{^{\prime}}}}}}_{\mathrm{S}8}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}8}(\dot{t)}={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}$$
(9)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}9}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}9}(\dot{t)}={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}$$
(10 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}10}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}10}(\dot{t)}={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}1}(\dot{t)}$$
(11 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}11}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}11}(\dot{t)}={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}$$
(12)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}12}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}12}(\dot{t)}={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}$$
(13)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}13}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}13}(\dot{t)}={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}$$
(14)
$${{\mathrm{P}}^{\mathrm{^{\prime}}}}_{\mathrm{S}14}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}14}(\dot{t)}={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}$$
(15)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}15}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}15}(\dot{t)}={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}2}(\dot{t)}$$
(16)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}16}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}16}(\dot{t)}={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}$$
(17)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}17}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}17}(\dot{t)}={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}312 }(\dot{t)}$$
(18)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}18}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}18}(\dot{t)}={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}$$
(19)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}19}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}19}(\dot{t)}={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}$$
(20)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}20}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}20}(\dot{t)}={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}3}(\dot{t)}$$
(21)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}21}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}21}(\dot{t)}={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}$$
(22)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}22}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}22}(\dot{t)}={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}$$
(23)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}23}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}23}(\dot{t)}={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}$$
(24)
$${{\mathrm{P}}^{\mathrm{^{\prime}}}}_{\mathrm{S}24}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}24}(\dot{t)}={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}4}(\dot{t)}$$
(25)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}25}(\dot{t)}+{\upmu }_{17}{\mathrm{P}}_{\mathrm{S}25}(\dot{t)}={\Phi }_{17}{\mathrm{P}}_{5\mathrm{S}}(\dot{t)}$$
(26)
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}26}(\dot{t)}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}26}(\dot{t)}={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}$$
(27 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}27}(\dot{t)}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}27}(\dot{t)}={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}$$
(28 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}28}(\dot{t)}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}28}(\dot{t)}={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}$$
(29 )
$${\mathrm{P{\mathrm{^{\prime}}}}}_{\mathrm{S}29}(\dot{t)}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}29}(\dot{t)}={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}5}(\dot{t)}$$
(30)

Equations 31 to 60

$$\left[{\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}\right]{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}4}\left(\mathrm{t}\right)+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)$$
(31)
$$[{\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}+{\upmu }_{17}] {\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)= {\upmu }_{17}{\mathrm{P}}_{\mathrm{S}6}\left(\mathrm{t}\right)+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}7}\left(\mathrm{t}\right)+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}8}\left(\mathrm{t}\right)+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}9}\left(\mathrm{t}\right) +{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}10}\left(\mathrm{t}\right)+{\Phi }_{17}{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)$$
(32)
$$[{\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}+{\upmu }_{18}{]\mathrm{ P}}_{\mathrm{S}2}\left(\mathrm{t}\right)={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}11}\left(\mathrm{t}\right)+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}12}\left(\mathrm{t}\right)+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}13}\left(\mathrm{t}\right)+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}14}\left(\mathrm{t}\right)+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}15}\left(\mathrm{t}\right)+{\Phi }_{18}{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)$$
(33)
$$\left[{\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}+{\upmu }_{19}\right]{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}16}\left(\mathrm{t}\right)+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}17}\left(\mathrm{t}\right)+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}18}\left(\mathrm{t}\right)+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}19}\left(\mathrm{t}\right)+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}20}\left(\mathrm{t}\right)+{\Phi }_{19}{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)$$
(34)
$$[{\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}+{\upmu }_{20}{]\mathrm{ P}}_{\mathrm{S}4}\left(\mathrm{t}\right)={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}21}\left(\mathrm{t}\right)+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}22}\left(\mathrm{t}\right)+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}23}\left(\mathrm{t}\right)+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}24}\left(\mathrm{t}\right)+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)$$
(35)
$${[\Phi }_{17}+{\Phi }_{18}+{\Phi }_{19}+{\Phi }_{20}+{\Phi }_{21}+{\upmu }_{20}]{\mathrm{P}}_{\mathrm{S}5}={\upmu }_{17}{\mathrm{P}}_{\mathrm{S}25}+{\upmu }_{18}{\mathrm{P}}_{\mathrm{S}26}+{\upmu }_{19}{\mathrm{P}}_{\mathrm{S}27}+{\upmu }_{20}{\mathrm{P}}_{\mathrm{S}28}+{\upmu }_{21}{\mathrm{P}}_{\mathrm{S}29}+{\Phi }_{20}{\mathrm{P}}_{\mathrm{S}4}$$
(36)
$${\upmu }_{17}{\mathrm{P}}_{\mathrm{S}6}\left(\mathrm{t}\right) ={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)$$
(37)
$${\upmu }_{18}{\mathrm{P}}_{\mathrm{S}7}\left(\mathrm{t}\right)={\Phi }_{14}{\mathrm{P}}_{\mathrm{S}0}\left(\mathrm{t}\right)$$
(38)
$${\upmu }_{19}{\mathrm{P}}_{\mathrm{S}8}\left(\mathrm{t}\right)={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)$$
(39)
$${\upmu }_{20}{\mathrm{P}}_{\mathrm{S}9}\left(\mathrm{t}\right)={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)$$
(40)
$${\upmu }_{21}{\mathrm{P}}_{\mathrm{S}10}\left(\mathrm{t}\right)={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}1}\left(\mathrm{t}\right)$$
(41)
$${\upmu }_{17}{\mathrm{P}}_{\mathrm{S}11}\left(\mathrm{t}\right)={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)$$
(42)
$${\upmu }_{18}{\mathrm{P}}_{\mathrm{S}12}\left(\mathrm{t}\right)={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)$$
(43)
$${\upmu }_{19}{\mathrm{P}}_{\mathrm{S}13}\left(\mathrm{t}\right)={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)$$
(44)
$${\upmu }_{20}{\mathrm{P}}_{\mathrm{S}14}\left(\mathrm{t}\right)={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)$$
(45)
$${\upmu }_{21}{\mathrm{P}}_{\mathrm{S}15}\left(\mathrm{t}\right)={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}2}\left(\mathrm{t}\right)$$
(46)
$${\upmu }_{17}{\mathrm{P}}_{\mathrm{S}16}\left(\mathrm{t}\right)={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)$$
(47)
$${\upmu }_{18}{\mathrm{P}}_{\mathrm{S}17}\left(\mathrm{t}\right)={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)$$
(48)
$${\upmu }_{19}{\mathrm{P}}_{\mathrm{S}18}\left(\mathrm{t}\right)={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)$$
(49)
$${\upmu }_{20}{\mathrm{P}}_{\mathrm{S}19}\left(\mathrm{t}\right)={\Phi }_{20}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)$$
(50)
$${\upmu }_{21}{\mathrm{P}}_{\mathrm{S}20}\left(\mathrm{t}\right)={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}3}\left(\mathrm{t}\right)$$
(51)
$${\upmu }_{17}{\mathrm{P}}_{\mathrm{S}21}\left(\mathrm{t}\right)={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}4}\left(\mathrm{t}\right)$$
(52)
$${\upmu }_{18}{\mathrm{P}}_{\mathrm{S}22}\left(\mathrm{t}\right)={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}4}\left(\mathrm{t}\right)$$
(53)
$${\upmu }_{19}{\mathrm{P}}_{\mathrm{S}23}\left(\mathrm{t}\right)={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}4}\left(\mathrm{t}\right)$$
(54)
$${\upmu }_{21}{\mathrm{P}}_{\mathrm{S}24}\left(\mathrm{t}\right)={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}4}\left(\mathrm{t}\right)$$
(55)
$${\upmu }_{17}{\mathrm{P}}_{\mathrm{S}25}\left(\mathrm{t}\right)={\Phi }_{17}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)$$
(56)
$${\upmu }_{18}{\mathrm{P}}_{\mathrm{S}26}\left(\mathrm{t}\right)={\Phi }_{18}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)$$
(57)
$${\upmu }_{19}{\mathrm{P}}_{\mathrm{S}27}\left(\mathrm{t}\right)={\Phi }_{19}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)$$
(58)
$${\upmu }_{20}{\mathrm{P}}_{\mathrm{S}28}\left(\mathrm{t}\right)={\Phi }_{20}{\mathrm{P}}_{5\mathrm{S}}\left(\mathrm{t}\right)$$
(59)
$${\upmu }_{21}{\mathrm{P}}_{\mathrm{S}29}\left(\mathrm{t}\right)={\Phi }_{21}{\mathrm{P}}_{\mathrm{S}5}\left(\mathrm{t}\right)$$
(60)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Malik, S., Singla, S. et al. A probabilistic approach to performance analysis of various subsystems in an Indian sugar plant. Int J Syst Assur Eng Manag 14, 2410–2422 (2023). https://doi.org/10.1007/s13198-023-02089-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-023-02089-7

Keywords

Navigation