Skip to main content
Log in

Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The bivariate Weibull-Geometric (BWG) distribution has been proposed by Kundu and Gupta (J Multivar Anal 123:19-29, 2014). They derived different properties of the proposed distribution and computing the maximum likelihood estimators via the expectation-maximization algorithm. The Bayes estimators of the parameters from the BWG distribution based on the squared error loss function (symmetric) and linear-exponential (LINEX) loss function (asymmetric), using informative and non-informative gamma priors are presented. Since the Bayes estimators of the mentioned distribution with five parameters cannot be obtained in explicit forms; the Gibbs sampler procedure is opted to achieve the Bayes estimators. Markov Chain Monte Carlo (MCMC) methods are broadly used to implement and compute the Bayes estimates. The convergence of the Markov chain to a stationary distribution has also been considered in detail. The associated credible intervals, namely the highest posterior density of the unknown parameters, are also constructed. The Monte Carlo simulations are done to compare different estimates. Finally, a real data set is considered to perform for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azeem A, Sajid A, Shama K (2019) On the bayesian analysis of extended weibull-geometric distribution. J Reliab Stat Stud 12(2):115–137

    Google Scholar 

  • Barreto-Souza W (2012) Bivariate gamma-geometric law and its induced lévy process. J Multivar Anal 109:130–145

    Article  MathSciNet  Google Scholar 

  • Basikhasteh M, Lak F, Afshari M (2020) Bayesian estimation of stress-strength reliability for two-parameter bathtub-shaped lifetime distribution based on maximum ranked set sampling with unequal samples. J Stat Comput Simul 90(16):2975–2990

    Article  Google Scholar 

  • Block HW, Basu AP (1974) A continuous bivariate exponential extension. J Am Stat Assoc 69(348):1031–1037

    MathSciNet  MATH  Google Scholar 

  • Downton F (1970) Bivariate exponential distributions in reliability theory. J Royal Stat Soc Series B (Methodol) 32(3):408–417

    MathSciNet  MATH  Google Scholar 

  • Franco M, Kundu D, Vivo J-M (2011) Multivariate extension of modified sarhan-balakrishnan bivariate distribution. J Stat Plan Inference 141(11):3400–3412

    Article  MathSciNet  Google Scholar 

  • Franco M, Vivo J-M (2010) A multivariate extension of sarhan and balakrishnans bivariate distribution and its ageing and dependence properties. J Multivar Anal 101(3):491–499

    Article  MathSciNet  Google Scholar 

  • Freund JE (1961) A bivariate extension of the exponential distribution. J Am Stat Assoc 56(296):971–977

    Article  MathSciNet  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. University Press, Oxford, pp 169–193

    Google Scholar 

  • Ghitany ME, Al-Awadhi FA, Alkhalfan LA (2007) Marshall-olkin extended lomax distribution and its application to censored data. Commun Stat Theory Methods 36(10):1855–1866

    Article  MathSciNet  Google Scholar 

  • Ghitany ME, Al-Hussaini EK, Al-Jarallah RA (2005) Marshall-olkin extended weibull distribution and its application to censored data. J Appl Stat 32(10):1025–1034

    Article  MathSciNet  Google Scholar 

  • Guan Q, Tang Y, Xu A (2013) Objective bayesian analysis for bivariate marshall-olkin exponential distribution. Comput Stat Data Anal 64:299–313

    Article  MathSciNet  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707

    Article  MathSciNet  Google Scholar 

  • Hanagal DD, Ahmadi KA (2009) Bayesian estimation of the parameters of bivariate exponential distributions. Commun Stat Simul Comput 38(7):1391–1413

    Article  MathSciNet  Google Scholar 

  • Hanagal DD, Sharma R (2015) Bayesian inference in marshall-olkin bivariate exponential shared gamma frailty regression model under random censoring. Commun Stat Theory Methods 44(1):24–47

    Article  MathSciNet  Google Scholar 

  • Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Opns Res 31(1):1109–44

    Article  Google Scholar 

  • Heinrich G, Jensen U (1995) Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extensions. Metrika 42(1):49–65

    Article  MathSciNet  Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous multivariate distributions. Models and Applications. John Wiley & Sons, New York

    Book  Google Scholar 

  • Kundu D, Dey A (2009) Estimating the parameters of the marshall-olkin bivariate weibull distribution by em algorithm. Comput Stat Data Anal 53:956–965

    Article  MathSciNet  Google Scholar 

  • Kundu D, Gupta A (2013) Bayes estimation for the marshall-olkin bivariate weibull distribution. Comput Stat Data Anal 57:271–281

    Article  MathSciNet  Google Scholar 

  • Kundu D, Gupta AK (2014) On bivariate weibull-geometric distribution. J Multivar Anal 123:19–29

    Article  MathSciNet  Google Scholar 

  • Kundu D, Gupta RD (2010) Modified sarhan-balakrishnan singular bivariate distribution. J Stat Plan Inference 140(2):526–538

    Article  MathSciNet  Google Scholar 

  • Lindley DV (1980) Approximate bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa 31(1):223–245

    Article  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62(317):30–44

    Article  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84(3):641–652

    Article  MathSciNet  Google Scholar 

  • Meintanis SG (2007) Test of fit for marshall-olkin distributions with applications. J Stat Plan Inference 137(12):3954–3963

    Article  MathSciNet  Google Scholar 

  • Pena EA, Gupta AK (1990) Bayes estimation for the marshall-olkin exponential distribution. J Royal Stat Soc Series B (Methodol) 52(2):379–389

    MathSciNet  MATH  Google Scholar 

  • Pham H, Lai C (2007) On recent generalizations of the weibull distribution. IEEE Trans Reliab 56(3):454–458

    Article  Google Scholar 

  • Sajid A, Muhammad S, Ismail S, Sanku D (2019) Bivariate discrete nadarajah and haghighi distribution: properties and different methods of estimation. Filomat 33(17):5589–5610

    Article  MathSciNet  Google Scholar 

  • Sarhan AM, Balakrishnan N (2007) A new class of bivariate distributions and its mixture. J Multivar Anal 98(7):1508–1527

    Article  MathSciNet  Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and two anonymous referees for their constrictive comments and suggestions that appreciably improved the quality of presentation of this manuscript.

Funding

All the fund was minor and provided by Payame Noor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Makhdoom.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basikhasteh, M., Makhdoom, I. Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions. Int J Syst Assur Eng Manag 13, 867–880 (2022). https://doi.org/10.1007/s13198-021-01348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01348-9

Keywords

Navigation