Skip to main content

Laplacian whale optimization algorithm

Abstract

Whale optimization algorithm is a new member of nature inspired optimization algorithm which is inspired from foraging behaviour of humpback whales. Similar to other heuristic algorithms, Whale optimization algorithm suffers with immature convergence and stagnation problems while solving optimization problems. In this paper, Whale optimization algorithm is hybridized with Laplace Crossover operator and a new algorithm, Laplacian whale optimization algorithm (LXWOA), has been proposed. It has been used to solve a set of 23 classical benchmark functions which consists of scalable unimodal functions, scalable multimodal functions and low dimensional multimodal functions and the results are compared with original whale optimization algorithm, particle swarm optimization, differential evolution, gravitational search algorithm and Laplacian gravitational search algorithm. In this paper, LXWOA and WOA have also been used to solve the problem of extraction of compounds from gardenia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbass HA (2001) MBO: marriage in honey bees optimization-a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation, pp 207–214

  2. Abdel-Basset M, El-Shahat D, El-Henawy I, Sangaiah AK, Ahmed SH (2018) A novel whale optimization algorithm for cryptanalysis in Merkle-Hellman cryptosystem. Mobile Netw Appl 1–11

  3. Abdel-Basset M, El-Shahat D, Sangaiah AK (2019) A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem. Int J Mach Learn Cybern 1–20

  4. Ala’m AZ, Faris H, Hassonah MA (2018) Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts. Knowl Based Syst 153:91–104

    Article  Google Scholar 

  5. Algabalawy MA, Abdelaziz AY, Mekhamer SF, Aleem SHA (2018) Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms. J Electr Syst Inf Technol 5(3):312–325

    Google Scholar 

  6. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 1–15

    Article  Google Scholar 

  7. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: Proceedings of the IEEE swarm intelligence symposium, pp 12–14

  8. Bui QT, Pham MV, Nguyen QH, Nguyen LX, Pham HM (2019) Whale optimization algorithm and adaptive neuro-fuzzy inference system: a hybrid method for feature selection and land pattern classification. Int J Remote Sens 1–16

  9. Dasgupta D, Zbigniew M (2013) Evolutionary algorithms in engineering applications. Springer

  10. Deep K, Bansal JC (2009) Optimization of directional over current relay times using Laplace Crossover Particle Swarm Optimization (LXPSO). In: 2009 World congress on nature & biologically inspired computing (NaBIC), pp 288–293

  11. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911

    MATH  MathSciNet  Google Scholar 

  12. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  13. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Jiao L, Wang L, Gao X, Liu J, Wu F (eds) Advances in natural computation. ICNC 2006. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol 4222, pp 264–273

    Google Scholar 

  14. Eid HF (2018) Binary whale optimisation: an effective swarm algorithm for feature selection. Int J Metaheuristics 7(1):67–79

    Article  Google Scholar 

  15. El Aziz MA, Ahmed Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256

    Article  Google Scholar 

  16. El Aziz MA, Ewees AA, Hassanien AE, Mudhsh M, Xiong S (2018) Multi-objective whale optimization algorithm for multilevel thresholding segmentation. In: Advances in soft computing and machine learning in image processing. Springer, Cham, pp 23–39

  17. El Aziz MA, Ewees AA, Hassanien AE (2018b) Multi-objective whale optimization algorithm for content-based image retrieval. Multimed Tools Appl 77(19):26135–26172

    Article  Google Scholar 

  18. Elaziz MA, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manag 171:1843–1859

    Article  Google Scholar 

  19. Elhosseini MA, Haikal AY, Badawy M, Khashan N (2019) Biped robot stability based on an A-C parametric Whale Optimization Algorithm. J Comput Sci 31:17–32

    MathSciNet  Article  Google Scholar 

  20. Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  21. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  22. Garg V, Deep K (2016) Optimal extraction of bioactive compounds from Gardenia using Laplacian biogeography based optimization. In: Kim J, Jim Z (eds) Harmony search algorithm advances in intelligent systems and computing, vol 382. Springer, Berlin, pp 251–258

    Chapter  Google Scholar 

  23. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  24. Ghahremani-Nahr J, Kian R, Sabet E (2019) A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Syst Appl 116:454–471

    Article  Google Scholar 

  25. Glover F (1989) Tabu search—Part I. ORSA J Comput 1(3):190–206

    MATH  MathSciNet  Article  Google Scholar 

  26. Glover F (1990) Tabu search—Part II. ORSA J Comput 2(1):4–32

    MATH  MathSciNet  Article  Google Scholar 

  27. Goldbogen JA, Friedlaender AS, Calambokidis J, Mckenna MF, Simon M, Nowacek DP (2013) Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63(2):90–100

    Article  Google Scholar 

  28. Hasanien HM (2018) Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electr Power Syst Res 157:168–176

    Article  Google Scholar 

  29. Hassan G, Hassanien AE (2018) Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal Image Video Process 12(2):263–270

    Article  Google Scholar 

  30. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  31. Horng MF, Dao TK, Shieh CS (2017) A multi-objective optimal vehicle fuel consumption based on whale optimization algorithm. In: Advances in intelligent information hiding and multimedia signal processing. Springer, Cham, pp 371–380

    Google Scholar 

  32. Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. In: Recent trends in signal and image processing. Springer, Singapore, pp 79–87

    Google Scholar 

  33. Jadhav AN, Gomathi N (2018) WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57(3):1569–1584

    Article  Google Scholar 

  34. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284

    Google Scholar 

  35. Kaveh A, Ghazaan MI (2017) Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech Based Des Struct Mach 45(3):345–362

    Article  Google Scholar 

  36. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer US, pp 760–766

  37. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MATH  MathSciNet  Article  Google Scholar 

  38. Koza JR (1992) Genetic programming

  39. Laskar NM, Guha K, Chatterjee I, Chanda S, Baishnab KL, Paul PK (2019) HWPSO: a new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Appl Intell 49(1):265–291

    Article  Google Scholar 

  40. Luo J, Shi B (2018) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 1–19

  41. Mafarja MM, Mirjalili S (2017) Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312

    Article  Google Scholar 

  42. Mehne HH, Mirjalili S (2018) A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowl Based Syst 151:114–123

    Article  Google Scholar 

  43. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  44. Mirjalili S, Mirjalili SM, Saremi S, Mirjalili S (2020) Whale Optimization Algorithm: theory, literature review, and application in designing photonic crystal filters. In: Nature-inspired optimizers. Springer, Cham, pp 219–238

    Google Scholar 

  45. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv: 1208.2214

  46. Mostafa A, Hassanien AE, Houseni M, Hefny H (2017) Liver segmentation in MRI images based on whale optimization algorithm. Multimed Tools Appl 76(23):24931–24954

    Article  Google Scholar 

  47. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, pp 162–173

  48. Nasiri J, Khiyabani FM (2018) A whale optimization algorithm (WOA) approach for clustering. Cogent Math Stat 5(1):1–13

    MATH  MathSciNet  Article  Google Scholar 

  49. Nazari-Heris M, Mehdinejad M, Mohammadi-Ivatloo B, Babamalek-Gharehpetian G (2017) Combined heat and power economic dispatch problem solution by implementation of whale optimization method. Neural Comput Appl 1–16

  50. Oliva D, El Aziz MA, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Article  Google Scholar 

  51. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  52. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Article  Google Scholar 

  53. Rechenberg I (1978) Evolutionsstrategien. Springer, Berlin, pp 83–114

    Google Scholar 

  54. Reddy PDP, Reddy VCV, Manohar TG (2017) Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms. J Electr Syst Inf Technol 175–191

  55. Saidala RK, Devarakonda N (2018) Improved whale optimization algorithm case study: clinical data of anaemic pregnant woman. In: Data engineering and intelligent computing. Springer, Singapore, pp 271–281

    Google Scholar 

  56. Shashi DK, Katiyar VK (2010) Multi-objective extraction optimization of bioactive compounds from Gardenia using real coded genetic algorithm. In: 6th World congress of biomaconics, vol 31, pp 1436–1466

    Google Scholar 

  57. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  58. Singh A, Deep K (2015) Real coded genetic algorithm operators embedded in gravitational search algorithm for continuous optimization. Int J Intell Syst Appl 7(12):1–22

    Google Scholar 

  59. Singh A, Deep K (2017a) Novel hybridized variants of gravitational search algorithm for constraint optimization. Int J Swarm Intell 3(1):1–22

    MathSciNet  Article  Google Scholar 

  60. Singh A, Deep K (2017b) Hybridized gravitational search algorithms with real coded genetic algorithms for integer and mixed integer optimization problems. In: Proceedings of sixth international conference on soft computing for problem solving. Springer, Singapore, pp 84–112

    Google Scholar 

  61. Sreenu K, Sreelatha M (2017) W-scheduler: whale optimization for task scheduling in cloud computing. Cluster Comput 1–12

  62. Sun Y, Wang X, Chen Y, Liu Z (2018) A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst Appl 114:563–577

    Article  Google Scholar 

  63. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Advances in swarm intelligence. Springer, pp 355–364

  64. Tharwat A, Moemen YS, Hassanien AE (2017) Classication of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J Biomed Inform 68:132–149

    Article  Google Scholar 

  65. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  66. Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174:388–405

    Article  Google Scholar 

  67. Yan Z, Sha J, Liu B, Tian W, Lu J (2018) An ameliorative whale optimization algorithm for multi-objective optimal allocation of water resources in Handan, China. Water 10(1):87–116

    Article  Google Scholar 

  68. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Proceedings of the workshop on nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  69. Yang X-S (2010b) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  70. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of the world congress on nature & biologically inspired computing, NaBIC 2009, pp 210–214

  71. Yang B, Liu X, Gao Y (2009) Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov Food Sci Emerg Technol 10:610–615

    Article  Google Scholar 

  72. Yousri D, Allam D, Eteiba MB (2019) Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor. Appl Soft Comput 74:479–503

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A. Laplacian whale optimization algorithm. Int J Syst Assur Eng Manag 10, 713–730 (2019). https://doi.org/10.1007/s13198-019-00801-0

Download citation

Keywords

  • Whale optimization algorithm
  • Laplace crossover
  • Numerical optimization
  • Heuristic algorithm
  • Gardenia problem