Skip to main content
Log in

Estimation of a log-linear model for the reliability assessment of products under two stress variables

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this article, different models for reliability inference of devices affected by more than one accelerating variable in accelerated life tests are presented. General log-linear relationship is modeled with the lognormal and Weibull distributions considering the effect of two accelerating variables. Estimation of the parameters is performed via maximum likelihood estimation using the Newton–Raphson algorithm and through a Bayesian approach defining conjugate prior and initial non-informative distributions. In order to illustrate these models, an example is presented based on an accelerated life test applied to resistances. Obtained results show that although there are slight differences in the estimates of the parameters based on the two models and approaches, it can be noted that they have an important impact in the reliability inference. The best model and estimation approach is selected via information criteria. In addition, reliability information is obtained from the device under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MATH  MathSciNet  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from in-complete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MATH  Google Scholar 

  • Escobar LA, Meeker WQ (2006) A review of accelerated test models. Stat Sci 21(4):552–577

    Article  MATH  MathSciNet  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2009) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Hada A, Coit D, Agnello M, Megow K (2011) System reliability models with stress covariates for changing load profiles. In: Reliability and maintainability symposium (RAMS), 2011 Proceedings-Annual, IEEE, pp 1–7

  • Henningsen A, Toomet O (2011) maxLik: a package for maximum likelihood estimation in R. Comput Stat 26:443–458

    Article  MATH  MathSciNet  Google Scholar 

  • Kruschke JK (2011) Doing Bayesian data analysis: a tutorial with R and BUGS, 1st edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique, and future directions. Stat Med 28(25):3049–3067

    Article  MathSciNet  Google Scholar 

  • Meeker WQ, Escobar LA (2014) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  • Nelson WB (1990) Accelerated testing, statistical models, test plans and data analysis. Wiley, New York

    MATH  Google Scholar 

  • Pan Z, Balakrishnan N (2011) Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab Eng Syst Saf 96:949–957

    Article  Google Scholar 

  • Park C, Padgett WJ (2006) Stochastic degradation models with several accelerating variables. IEEE Trans Reliab 55(2):379–390

    Article  Google Scholar 

  • Rodríguez-Picón LA, Rodríguez Borbón MI, Valles-Rosales DJ, Flores Ochoa VH (2016) Modelling degradation with multiple accelerated processes. Qual Technol Quant Manag 13(3):333–354. doi:10.1080/16843703.2016.1189202

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  MathSciNet  Google Scholar 

  • Sen R, Ranjan R, Upadhyay SK (2015) Int J Syst Assur Eng Manag. doi:10.1007/s13198-015-0389-8

    Google Scholar 

  • Shiomi Y, Yanagisawa T (1979) On distribution parameter during accelerated life test for a carbon film resistor. Bull Electrotech Lab 43:330–345

    Google Scholar 

  • Singpurwalla ND (2006) Reliability and risk: a Bayesian perspective. Wiley, New York

    Book  MATH  Google Scholar 

  • Wang W, Kececioglu DB (2000) Fitting the Weibull log-linear model to accelerated life-test data. IEEE Trans Reliab 49(2):217–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alberto Rodríguez-Picón.

Appendices

Appendix 1: Hessian and gradient for lognormal-GLL

Gradient of \(l\left( \theta \right)\) is defined as follows

$$l^{\prime}\left( \theta \right) = \frac{\partial l\left( \theta \right)}{{\partial \theta_{i} }}, \quad 1 \le i \le 4$$
$$\frac{\partial l\left( \theta \right)}{{\partial \alpha_{0} }} = s\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)$$
$$\frac{\partial l\left( \theta \right)}{{\partial \alpha_{1} }} = \frac{s}{T}\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)$$
$$\frac{\partial l\left( \theta \right)}{{\partial \alpha_{2} }} = \ln \left( V \right)s\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)$$
$$\frac{\partial l\left( \theta \right)}{\partial s} = \frac{n}{2s} - \frac{1}{2}\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)^{2}$$
$$l^{\prime}\left( \theta \right) = \left[ {\begin{array}{*{20}c} {s\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)} \\ {\frac{s}{T}\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)} \\ {\begin{array}{*{20}c} {\ln \left( V \right)s\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)} \\ {\frac{n}{2s} - \frac{1}{2}\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)^{2} } \\ \end{array} } \\ \end{array} } \right]$$

Transpose of this vector is defined as follows,

$$\left[ {l^{'} \left( \theta \right)} \right]^{T} = \left[ {\begin{array}{*{20}c} {s\gamma } & {\frac{s}{T}\gamma } & {\begin{array}{*{20}c} {\ln \left( V \right)s\gamma } & {\frac{n}{2s} - \frac{1}{2}\mathop \sum \limits_{i = 1}^{n} \gamma^{2} } \\ \end{array} } \\ \end{array} } \right]$$

where,

$$\gamma = \mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right).$$

The Hessian of \(l\left( \theta \right)\) is defined as,

$$H\left( \theta \right) = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial \theta_{i} \partial \theta_{j} }}, \quad 1 \le i, \, j \le 4$$

Thus, the construction of the Hessian is a \(4 \times 4\) matrix,

$$H\left( \theta \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0}^{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial \alpha_{1} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial \alpha_{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial s}}} \\ {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial \alpha_{0} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1}^{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial \alpha_{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial s}}} \\ {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2} \partial \alpha_{0} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2} \partial \alpha_{1} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2}^{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2} \partial s}}} \\ {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial s\partial \alpha_{0} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial s\partial \alpha_{1} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial s\partial \alpha_{2} }}} & {\frac{{\partial^{2} l\left( \theta \right)}}{{\partial s^{2} }}} \\ \end{array} } \right]$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0}^{2} }} = - ns$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial \alpha_{1} }} = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial \alpha_{0} }} = - \frac{ns}{T}$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial \alpha_{2} }} = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2} \partial \alpha_{0} }} = - \ln \left( V \right)ns$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{0} \partial s}} = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial s\partial \alpha_{0} }} = \mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1}^{2} }} = - \frac{ns}{{T^{2} }}$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial \alpha_{2} }} = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2} \partial \alpha_{1} }} = - \frac{\ln \left( V \right)ns}{T}$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{1} \partial s}} = \frac{{\partial^{2} l\left( \theta \right)}}{{\partial s\partial \alpha_{1} }} = \frac{1}{T}\mathop \sum \limits_{i = 1}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha_{0} - \alpha_{1} \frac{1}{T} - \alpha_{2} \ln \left( V \right)} \right)$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial \alpha_{2}^{2} }} = - \left( {\ln \left( V \right)} \right)^{2} ns$$
$$\frac{{\partial ^{2} l\left( \theta \right)}}{{\partial \alpha _{2} \partial s}} = \frac{{\partial ^{2} l\left( \theta \right)}}{{\partial s\partial \alpha _{2} }} = \ln \left( V \right)\mathop \sum \limits_{{i = 1}}^{n} \left( {\ln \left( {t_{i} } \right) - \alpha _{0} - \alpha _{1} \frac{1}{T} - \alpha _{2} \ln \left( V \right)} \right)$$
$$\frac{{\partial^{2} l\left( \theta \right)}}{{\partial s^{2} }} = - \frac{n}{{2s^{2} }}$$
$$H\left( \theta \right) = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - ns} \\ {\begin{array}{*{20}c} { - ns/T} \\ { - \ln \left( V \right)ns} \\ \gamma \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - ns/T} \\ {\begin{array}{*{20}c} { - ns/T^{2} } \\ { - \ln \left( V \right)ns/T} \\ {\gamma /T} \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} { - \ln \left( V \right)ns} \\ {\begin{array}{*{20}c} { - \ln \left( V \right)ns/T} \\ { - \left( {\ln \left( V \right)} \right)^{2} ns} \\ {\ln \left( V \right)\gamma } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} \gamma \\ {\begin{array}{*{20}c} {\gamma /T} \\ {\ln \left( V \right)\gamma } \\ { - \frac{n}{{2s^{2} }}} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]$$

The Fisher information matrix \(\left[ {I\left( \theta \right)} \right]\) evaluated at the MLE contain the entries,

$$I\left( \theta \right) = - \frac{{\partial^{2} l\left( \theta \right)}}{{\partial \theta_{i} \partial \theta_{j} }}, \quad 1 \le i, j \le 4$$

It is easy to see that next equality holds,

$$I\left( \theta \right) = - H\left( \theta \right)$$

Thus, we have,

$$I\left( \theta \right) = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {ns} \\ {\begin{array}{*{20}c} {ns/T} \\ {\ln \left( V \right)ns} \\ { - \gamma } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {ns/T} \\ {\begin{array}{*{20}c} {ns/T^{2} } \\ {\ln \left( V \right)ns/T} \\ { - \gamma /T} \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {\ln \left( V \right)ns} \\ {\begin{array}{*{20}c} {\ln \left( V \right)ns/T} \\ {\left( {\ln \left( V \right)} \right)^{2} ns} \\ { - \ln \left( V \right)\gamma } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} { - \gamma } \\ {\begin{array}{*{20}c} { - \gamma /T} \\ { - \ln \left( V \right)\gamma } \\ {\frac{n}{{2s^{2} }}} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]$$

Furthermore, the inverse of the Fisher information is an estimator of the asymptotic variance and covariance matrix,

$$Var\left( {\hat{\theta }} \right) = \left[ {I\left( \theta \right)} \right]^{ - 1}$$

Appendix 2: R code for Newton–Raphson process

figure afigure afigure a

Appendix 3: OpenBUGS code for lognormal-GLL and Weibull-GLL Bayesian estimation approach

figure bfigure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Picón, L.A., Flores-Ochoa, V.H. Estimation of a log-linear model for the reliability assessment of products under two stress variables. Int J Syst Assur Eng Manag 8 (Suppl 2), 1026–1040 (2017). https://doi.org/10.1007/s13198-016-0564-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0564-6

Keywords

Navigation