Skip to main content

Advertisement

Log in

A fast and reliable perturb and observe maximum power point tracker for solar PV system

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Solar energy is considered as the most reliable among all renewable energy sources. Solar photovoltaic (PV) is used to convert solar energy into unregulated electrical energy. Maximum power point tracker (MPPT) is used to harness maximum power from solar PV due to its non linear characteristics and low efficiency. Perturb and observe (P&O) is one of the MPPT method used in solar PV system. The conventional P&O MPPT method has the drawback of low convergence time and steady state oscillation with fix step size. In this paper a modified P&O method is designed to achieve high convergence speed and low oscillations. The new method also assures reliable operation under fast changing atmospheric conditions and under load variations as well. A prototype unit is made in the lab and tested for improved results. Simulation study is done using PSIM simulation software. The proposed P&O MPPT is tested with resistive load connected to DC bus and with commonly used compact fluorescent lamp (CFL) load after connecting high frequency inverter between DC bus and CFL. The improved P&O MPPT scheme gives convergence time of 0.1 s, steady state oscillations in power is 1 W and time to restore maximum power point during load change condition is 0.15 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • AEO (2013) Annual energy report. Department of Energy, USA. http://www.eia.gov

  • Bianconi E, Calvante J, Giral R, Mamarelis E, Petrone G, Ramos-Paja CA (2013) Perturb and observe MPPT algorithm with a current controller based on the sliding mode. Int J Electr Power Energy Syst 44(1):346–356

    Article  Google Scholar 

  • De Brito MAG, Galotto L, Poltronieri L, e Melo GA, Canesin CA (2013) Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Ind Electron 60(3):1156

    Article  Google Scholar 

  • Enslin JHR, Wolf MS, Snyman DB, Swiegers W (1997) Integrated photovoltaic maximum power point tracking converter. IEEE Trans Ind Electron 44:769–773

    Article  Google Scholar 

  • Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439

    Article  Google Scholar 

  • Faranda R, Leva S, Maiyeri V (2008) MPPT techniques for PV system: energetic and cost comparison. Proc PESGM 09:1–6

    Google Scholar 

  • Ghassami AA, Sadeghzadeh SM, Soleimani A (2013) A high performance maximum power point tracker for PV systems. J Electr Power Energy Syst 53:237–243

    Article  Google Scholar 

  • Haque A (2014) Maximum power point tracking (MPPT) scheme for solar photovoltaic system. J Energy Technol Policy 1:115–122

    Article  Google Scholar 

  • Hardik DP, Ranjan M, Shambhu SN, Varsha S (2012) Maximum power extraction from photo-voltaic power generator with adaptive MPP tracker. J Appl Solar Energy 46(4):251–257

    Google Scholar 

  • Khairy S, Mazen AS, Adel A, Mahmoud A (2012) New high voltage gain dual-boost DC–DC converter for photovoltaic power systems. Int J Electr Power Compon Syst 40(7):711–728

    Article  Google Scholar 

  • Moon S, Kim S, Seo J, Park J, Park C (2014) Maximum power point tracking without current sensor for photovoltaic module integrated converter using Zigbee wireless network. J Electr Power Energy Syst 56:286–297

    Article  Google Scholar 

  • Moradi MH, Reisi AR (2011) A hybrid maximum power point tracking method for photovoltaic systems. J Solar Energy 85:2965–2976

    Article  Google Scholar 

  • Noguchi T, Togashi S, Makamoto R (2002) Short current pulse based maximum power point tracking method for multiple photovoltaic and converter module system. IEEE Trans Ind Electron 49:217–223

    Article  Google Scholar 

  • Safari A, Mekhilef S (2011) Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans Ind Electron 58(4):1154

    Article  Google Scholar 

  • Salas V, Olias E, Lazaro A, Barrado A (2005) New algorithm using only one variable measurement applied to a maximum power point tracker. J Solar Energy Mater Solar Cells 87:675–684

    Article  Google Scholar 

  • Soon TK, Mekhilef S, Safari A (2013) Simple and low cost incremental conductance maximum power point tracking using buck-boost converter. J Renew Sustain Energy 5:023106

    Article  Google Scholar 

  • Tseng KC, Huang CC, Shih WY (2013) A high step up converter with a voltage multiplier module for a photovoltaic system. IEEE Trans Power Electron 28(6):3047–3057

    Article  Google Scholar 

  • Villalva MG, Gazoli JR, Filho ER (2009) Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Trans Power Electron 5:1198–1208

    Article  Google Scholar 

  • Xiao W, Dunford WG (2004) A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: Proceedings of 35th annual IEEE power electronics specific conference, pp 1957–1963

  • Yu WL, Lee TP, Wu GH, Chen QS, Chiu HJ, Lo YK, Shih F (2010) A DSP based single stage maximum power point tracking PV Inverter. Proc APEC 25:948–952

    Google Scholar 

  • Zaheeruddin, Mishra S, Haque A (2015) Performance evaluation of modified perturb & observe maximum power point tracker for solar PV system. Int J Syst Assur Eng Manag. doi:10.1007/s13198-015-0369-z

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahteshamul Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, A., Zaheeruddin A fast and reliable perturb and observe maximum power point tracker for solar PV system. Int J Syst Assur Eng Manag 8 (Suppl 2), 773–787 (2017). https://doi.org/10.1007/s13198-016-0523-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0523-2

Keywords

Navigation