Skip to main content

Increasing flux density by HTS shielding pellet in superconducting synchronous machine based on flux concentration

Abstract

In this paper, we propose a solution which enhances the performance of the inductor in high-power superconducting synchronous machines based on the flux concentration while keeping the same topology and using a high temperature superconducting shielding pellet located between the two coils of the inductor. This pellet permits to recover the magnetic field which vanishes in the medium region due to the opposite direction of the coils. A method for 3D magnetostatic field analysis using the control volume method with unstructured grid is proposed. With this topology, we have obtained a maximum efficiency of about 8 % in the flux density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Ailam E, Netter D, Lévêque J, Douine B, Masson P, Rezzoug A (2007) Design and testing of a superconducting motor. IEEE Trans App Supercond 17(1):27–33

    Article  Google Scholar 

  2. Alloui L, Bouillault F, Mimoune SM (2009) Numerical study of the influence of flux creep and of thermal effect on dynamic behavior of magnetic levitation systems with a high-Tc superconductor using control volume method. EPJ App Phys 37(2):191

    Google Scholar 

  3. Alloui L, Bouillault F, Bernard L, Lévêque J, Mimoune SM (2012) 3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid. Physica C 475:32–37

    Article  Google Scholar 

  4. Kalsi, Swarn S (2002). Development status of superconducting rotating machines. IEEE PES Meeting, New York, 27–31

  5. Masson PJ, Luongo C (2005) A high power density superconducting motor for all-electric aircraft propulsion. IEEE Trans Appl Supercond 15(2):2226–2229

    Article  Google Scholar 

  6. Masson P, Netter D, Leveque J, Rezzoug A (2003) Experimental study of a new kind of superconducting inductor. IEEE Trans Appl Supercond 13(2):2239–2242

    Article  Google Scholar 

  7. Masson PJ, Tixador P, Luongo C (2007a) A safety torque generation in HTS propulsion motor for general aviation aircraft. IEEE Trans Appl Supercond 17(2):1619–1622

    Article  Google Scholar 

  8. Masson PJ, Pienkos J E, Luongo C (2007b) A scaling up of hts motor based on trapped flux and flux concentration for large aircraft propulsion. IEEE Trans Appl Supercond 17(2)

  9. Moulin R, Lévêque J, Durantay L, Douine B, Netter D, Rezzoug A (2010) Superconducting multistack inductor for synchronous motors using the diamagnetism property of bulk material. IEEE Trans Ind Electron 57(1):146–153

    Article  Google Scholar 

  10. Netter D, Eveque J, Ailam E, Douine B, Rezzoug A, Masson PJ (2006) Theoretical study of a new kind HTS motor. IEEE Trans Appl Supercond 15:2

    Google Scholar 

  11. Patankar SV (1980) Numerical heat transfer and fluid flow series in computational methods in mechanics and thermal sciences. Hemisphere Publishing Corporation, New York

    Google Scholar 

  12. Tixador P, Simon F, Daffix H, Deleglise (1999) Experimental superconducting permanent-magnet motor. IEEE Trans Appl Supercond 9(2):1205–1208

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rabia Boumaraf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boumaraf, R., Mimoune, S.M., Alloui, L. et al. Increasing flux density by HTS shielding pellet in superconducting synchronous machine based on flux concentration. Int J Syst Assur Eng Manag 5, 637–644 (2014). https://doi.org/10.1007/s13198-013-0215-0

Download citation

Keywords

  • Control volume method
  • Flux concentration
  • HTS shielding pellet
  • Superconducting synchronous machines