Skip to main content
Log in

Abstract

This paper reviews the recent modelling developments in estimating the remaining useful life (RUL) of industrial systems. The RUL estimation models are categorized into experimental, data driven, physics based and hybrid approaches. The paper reviews some typical approaches and discusses their advantages and disadvantages. According to the literature, the selection of the best model depends on the level of accuracy and availability of data. In cases of quick estimations which are less accurate, the data driven method is preferred, while the physics based approach is applied when the accuracy of estimation is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmadzadeh F, Lundberg J (2013a) Remaining useful life prediction of grinding mill liners using an artificial neural network. Miner Eng. doi:10.1016/j.mineng.2013.05.026

    MATH  Google Scholar 

  • Ahmadzadeh F, Lundberg J (2013b) Application of multi regressive linear models and neural network for wear prediction of grinding mill liners. Int J Adv Comput Sci APPL 4(5):53–58

    Google Scholar 

  • Ahmadzadeh F, Ghodrati B, Kumar U (2012) Mean residual life estimation considering operating environment. ICQRITTM Proceedings, New Delhi

    Google Scholar 

  • Akers DW, Rideout CA (2004) Measurement-based prognostic models for service induced damage in turbine engine components. IEEE Aerospace Proceeding

  • Altay N, Green WG (2006) OR/MS research in disaster operations management. Eur J Oper Res 175:475–493

    Article  MATH  Google Scholar 

  • Bagul YG (2009) Assessment of current health and remaining useful life of hard disk drives. Dissertation, Northeastern University

  • Bagul YG, Zeid I, Kamarthi SV (2008) Overview of remaining useful life methodologies. ASME 2008 Proceedings, New York

  • Banjevic D (2009) Remaining useful life in theory and practice. Metrika 69(2):337–349

    Google Scholar 

  • Banjevic D, Jardine AKS (2005) Calculation of reliability function and remaining useful life for a Markov failure time process, Ima J Manage Math: 1–16

  • Baruah P, Chinnam RB (2003) HMMs for diagnostics and prognostics in machining processes. Int J Prod Res 43(6):1275–1293

    Article  Google Scholar 

  • Bhattacharjee MC (1982) The class of mean residual lives and some consequences. Siam J Algebraic Discrete M 3:56–65

    Article  MathSciNet  MATH  Google Scholar 

  • Brotherton T, Jahns J, Jacobs J, Wroblewski D (2000) Prognosis of faults in gas turbine engines. IEEE Aerospace Proceedings 6:163–171

    Google Scholar 

  • Bukkapatnam STS (1997) Monitoring and control issues in chaotic processes: an application to turning process. Pennsylvania State University, Dissertation

    Google Scholar 

  • Butler KL (1996) An expert system based framework for an incipient failure detection and predictive maintenance system. Proceedings of Intelligent Sys Applications to Power Sys, Orlando, pp 321–326

    Google Scholar 

  • Byington CS, Watson M, Edwards D (2004) Data-driven neural network methodology to remaining life predictions for aircraft actuator components. IEEE, Piscataway

    Google Scholar 

  • Chen C, Vachtsevanos G, Orchard M (2010) Machine remaining useful life prediction based on adaptive neuro-fuzzy and high-order particle filtering. Proceedings of the prognostics and health management society, Portland

    Google Scholar 

  • Chinnam RB, Baruah P (2004) A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems. Int J Mater Prod Technol 20:166–179

    Article  Google Scholar 

  • Choi SS, Kang KS, Kim HG, Chang SH (1995) Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants. IEEE Trans Nucl Sci 42(4):1406–1418

    Article  Google Scholar 

  • Connor JT, Matinem RD, Atlas LE (1994) Recurrent neutral networks and robust time series prediction. IEEE Trans Neural Netw 5:240–254

    Article  Google Scholar 

  • Cox DR (1962) Renewal Theory. Methuen, London

    MATH  Google Scholar 

  • Cui LR, Loh HT, Xie M (2004) Sequential inspection strategy for multiple systems under availability requirement. Eur J Oper Res 155:170–177

    Article  MathSciNet  MATH  Google Scholar 

  • Dandotiya R, Lundberg J, Wijaya A (2011) Evaluation of abrasive wear measurement devices of mill liners. Intl J COMADEM 14(2):3–17

    Google Scholar 

  • Dong M, He D (2007a) A segmental hidden semi-Markov model (HSMM) based diagnostics and prognostics framework and methodology. Mech Syst Signal Pr 21(5):2248–2266

    Article  Google Scholar 

  • Dong M, He D (2007b) Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. Eur J Oper Res 178(3):858–878

    Article  MathSciNet  MATH  Google Scholar 

  • Dong M, Yang ZB (2008) Dynamic Bayesian network based prognosis in machining processes. J Shanghai Jiaotong Univ Sci 13(3):318–322

    Article  Google Scholar 

  • Dong M, He D, Banerjee P, Keller J (2006) Equipment health diagnosis and prognosis using hidden semi-markov models. Int J Adv Manuf Technol 30:738–749

    Article  Google Scholar 

  • Elandt-Johnson RC, Johnson NL (1980) Survival models and data analysis. Wiley, New York

    MATH  Google Scholar 

  • El-Koujok M, Gouriveau R, Zerhouni N (2008) From monitoring data to remaining useful life: an evolving approach including uncertainty. SReDA ESReDA/ESRA Proceeding, Spain

    Google Scholar 

  • Elwany AH, Gebraeel NZ (2008) Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans 40:629–639

    Article  Google Scholar 

  • Engel SJ, Gilmartin BJ, Bongort K, Hess A (2000) Prognostics: the real issues involved with predicting life remaining. IEEE Aerospace Proc. 6:457–469

    Google Scholar 

  • Essawy MA (2001) Methods to estimate machine remaining useful life using artificial neural networks. Defense Technical Information Center

  • Galar D, Kumar U, Lee J, Zhao W (2012) Estimation of remaining useful life time trajectory using support vector machines. COMADEM Proceeding, Hudderields

    Google Scholar 

  • Garga AK, McClintic KT, Campbell RL, Yang CC, Lebold MS, Hay TA, Byington CS (2001) Hybrid reasoning for prognostic learning in CBM systems. IEEE Aerospace Proceeding 6:2957–2969

    Google Scholar 

  • Gasperin M, Baskoski P, Juricic D, Jozef V (2011) Model-based prognostics of gear health using stochastic dynamic models. Mech Syst Signal Pr 25:537–538

    Article  Google Scholar 

  • Gebraeel NZ, Lawley MA (2008) A neural network degradation model for computing and updating residual life distributions. IEEE T Autom Sci Eng 5(1):154–163

    Article  Google Scholar 

  • Gebraeel N, Lawley MA, Liu R (2004) Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE T Ind Electron 51(3):694–700

    Article  Google Scholar 

  • Gebraeel NZ, Lawley MA, Li R, Ryan JK (2005) Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans 37:543–557

    Article  Google Scholar 

  • Ghodrati B, Ahmadzadeh F, Kumar U (2012) Remaining useful life estimation of mining equipment: a case study. ISMPES Proceeding, New Delhi

    Google Scholar 

  • Goebel K, Saha B, Saxena A (2005) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):33–40

    Article  Google Scholar 

  • Goh KM, Tjahjono B, Bainers T, Subramaniam SA (2006) Review of research in manufacturing prognostics. Proceedings of the IEEE on Industrial Informatics, pp 1–6

  • Gouriveau R, Dragomiri O, Dragomir F, Minca E, Zerhouni N (2009) Review of prognostic problem in condition-based maintenance. Proceeding of European Control, Budapest

  • Groer P (2000) Analysis of time-to-failure with a weibull model. MARCON Proceeding, Knoxville

    Google Scholar 

  • Gross AJ, Clark VA (1975) Survival distributions: reliability applications in the biomedical sciences. Wiley, New York

    MATH  Google Scholar 

  • Guess F, Proschan F (1985) Mean residual life: theory and applications. Handbook of Statistics7. North Holland, New York: 215–224

  • Heng A, Zhang S, Tan A, Mathew J (2009) Rotating machinery prognostics: state of the art, challenges and opportunities. Mech Syst Signal Pr 23:724–739

    Article  Google Scholar 

  • Hongmou L, Zein-Sabatto S (2001) Analysis of vibration signal’s time-frequency patterns for prediction of bearing’s remaining useful life. IEEE Proceeding, Piscataway

    Google Scholar 

  • Huang R (2007) Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech Syst Signal Pr 21(1):193–207

    Article  Google Scholar 

  • ISO (2004) 13381-1 Condition Monitoring and diagnostics of machines prognostics, Part1: general guidelines. Int Standard, ISO

  • Jardine AKS, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst and Signal Pr 20:1483–1510

    Article  Google Scholar 

  • Kacprzynski GJ, Gumina M, Roemer MJ, Caguiat DE (2001) A prognostic modeling approach for predicting recurring maintenance for shipboard propulsion systems. ASME Turbo Expo Proceeding, New Orleans

    Google Scholar 

  • Keller A, Perera U, Kamath A (1982) Reliability analysis of CNC machine tools. Reliab Eng 3:449–473

    Article  Google Scholar 

  • Kiddy JS (2003) Remaining useful life prediction based on known usage data. SPIE Int Soc Opt Eng

  • Kim KO, Kuo W (2009) Optimal burn-in for maximizing reliability of repairable non-series systems. Eur J Oper Res 193:140–151

    Article  MATH  Google Scholar 

  • Kim HE, Tan A, Mathew J, Kim E, Choi BK (2009) Integrated diagnosis and prognosis model for high pressure LNG pump. Pacific vibration Proceedings, Christchurch

    Google Scholar 

  • Kim HE, Tan A, Mathew J, Kim E, Choi BK (2010) Machine prognostics based on health state probability estimation. Queensland University of Technology, Dissertation

    Google Scholar 

  • Kim HE, Tan A, Mathew J, Kim E, Choi BK (2013) Machine prognostics based on health state estimation using SVM. Engineering Asset Management Review 2. Springer, 169–186

  • Kothamasu R, Huang S, VerDuin W (2006) System health monitoring and prognostics—a review of current paradigms and practices. Int J Adv Manuf Technol 28:1012–1024

    Google Scholar 

  • Kotz S, Shanbhag DN (1980) Some new approaches to probability distributions. Adv in Aply Probab 12:903–921

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo W (1984) Reliability enhancement through optimal burn-in. IRBS Trans Reliab 33:145–156

    Article  MATH  Google Scholar 

  • Lebold M, Thurston M (2001) Open standards for condition-based maintenance and prognostic systems. MARCON Proceeding

  • Lee MLT, Whitmore GA (2006) Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat Sci 21(4):501–513

    Article  MathSciNet  MATH  Google Scholar 

  • Lee J, Ni J, Djurdjanovic D, Qiu H, Liao LT (2006) Intelligent prognostics tools and e-maintenance. Comput Ind 57:476–489

    Article  Google Scholar 

  • Li CJ, Lee H (2005) Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech Syst and Signal Pr 19:836–846

    Article  Google Scholar 

  • Li Y, Billington S, Zhang C, Kurfess T, Danyluk S, Liang S (1999) Adaptive prognostics for rolling element bearing condition. Mech Syst and Signal Pr 13:103–113

    Article  Google Scholar 

  • Liao H (2005) A predictive tool for remaining useful life estimation of rotating machinery components. Am S Mech Eng, New York

    Google Scholar 

  • Lloyd GM, Hasselman T, Paez T (2005) A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates. Eng Tech Manag: 97–106

  • Lorton A, Fouladirad M, Grall A (2013) Computation of remaining useful life on a physic-based model and impact of a prognosis on the maintenance process. J Risk Reliab. doi:10.1177/1748006X13481926

    MATH  Google Scholar 

  • Luo J., Namburu M., Pattipati K., Qiao L., Kawamoto M, Chigusa S (2003) Model-based prognostic techniques. In: Proceedings of IEEE Autotestcon, pp 330–340

  • Mazhar MI, Kara S, Kaebernick H (2007) Remaining life estimation of used components in consumer products: life cycle data analysis by Weibull and artificial neural networks. J Oper Manag 25:1184–1193

    Article  Google Scholar 

  • Medjaher K, Tobon-mejia DA, Zerhouni N (2012) Remaining useful life estimation of critical components with application to bearings. IEEE T Reliab 61:292–302

    Article  Google Scholar 

  • Morrison DG (1978) On linearly increasing mean residual lifetimes. J APP Probab 1:617–620

    Article  Google Scholar 

  • Oppenheimer CH, Loparo KA (2002) Physically based diagnosis and prognosis of cracked rotor shafts. SPIE Proceedings 4733:122–132

    Article  Google Scholar 

  • Papakostas N, Papachatzakis P, Xanthakis V, Mourtzis D, Chryssolouris G (2010) An approach to operational aircraft maintenance planning. Decis Support Syst 48:604–612

    Article  Google Scholar 

  • Pecht M (2008) Prognostics and health management of electronics. John Wiley, New Jersey

    Book  Google Scholar 

  • Pecht M, Jaai R (2010) A prognostics and health management roadmap for information and electronics-rich system. Microelectron Reliab 50:317–323

    Article  Google Scholar 

  • Peng Y, Dong M, Jian Zuo M (2010) Current status of machine prognostics in condition-based maintenance: a review. Int J Adv Manuf Technol 50:297–313

    Article  Google Scholar 

  • Przytula KW, Choi A (2007) Reasoning framework for diagnosis and prognosis. IEEE Aerospace Proceeding, Big Sky 4161649

    Google Scholar 

  • Redtenbacher F (1852) Prinzipen der Mechanic und des Maschinenbaus. Basserman, Mannheim, pp 257–290

    Google Scholar 

  • Sankararaman S, Goebel K (2013) Uncertainty quantification in remaining useful life of aerospace components using state space models and inverse form. ASME Proceeding, Boston

    Google Scholar 

  • Satish B, Sarma NDR (2005) A fuzzy bp approach for diagnosis and prognosis of bearing faults in induction motors. IEEE Power Eng Soc Gen Meet 3:2291–2294

    Google Scholar 

  • Shao Y, Nezu K (2000) Prognosis of remaining bearing life using neural networks. J Syst Control Eng 214(3):217–230

    Google Scholar 

  • Sheppard JW, Kaufman MA (2005) Bayesian diagnosis and prognosis using instrument uncertainty. AUTOTESTCON Proceedings, Orlando, pp 417–423

    Google Scholar 

  • Sikorska JZ, Hodkiewicz M, Ma L (2011) Prognostic modelling options for remaining useful life estimation by industry. Mech Syst Signal Pr 25(5):1803–1836

    Article  Google Scholar 

  • Sutrisno E, Oh E, Vasan A, Pecht M (2012) Estimation of remaining useful life of ball bearings using data driven methodologies. IEEE Proceedings on Prognostic and Health Management, Beijing

    Google Scholar 

  • Tian Z (2009) An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J Intell Manuf. doi:10.1007/s10845-009-0356-9

    Google Scholar 

  • Tian Z, Wong L, Safaei N (2009) A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mech Syst Signal Pr 24(5):1542–1555

    Article  Google Scholar 

  • Tobon-mejia DA, Medjaher K, Zerhouni N (2012) CNC machine tool’s wear diagnostics and prognostics by using dynamic Bayesian networks. Mech Syst Signal Pr Euro 28:167–182

    Article  Google Scholar 

  • Todinov MT (2005) Limiting the probability of failure for components containing flaws. Comp Mater Sci 32:156–166

    Google Scholar 

  • Usynin AV (2007) A Generic prognostic framework for remaining useful life prediction of complex engineering systems. University of Tennessee, Knoxville, Dissertation

    Google Scholar 

  • Vachtsevanos G, Lewis F, Roemer M, Hess A,  Wu B (2006) Intelligent fault diagnosis and prognosis for engineering systems. Wiley, New Jersey

  • Victor L, Riquelme M, Balakrishnan N, Sanhueza A (2008) Lifetime analysis based on the generalized Birnbaum–Saunders distribution. Comput Stat Data An 52:2079–2097

    Article  MATH  Google Scholar 

  • Wang W (2002) A model to predict the residual life of rolling element bearings given monitored condition information to date. Ima J Manag Math 13:3–16

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W (2007) A prognosis model for wear prediction based oil-based monitoring. J Oper Res Soc 58:887–893

    Article  MATH  Google Scholar 

  • Wang P, Vachtsevanos G (2001) Fault prognosis using dynamic wavelet neural networks. Artif Intell Eng Des Anal Manuf (AIEDAM) 15(4):349–365

    Article  MATH  Google Scholar 

  • Wang W, Zhang W (2008) An asset residual life prediction model based on expert judgments. Eur J Oper Res 188:496–505

    Article  MATH  Google Scholar 

  • Wang WQ, Golnaraghi MF, Ismail F (2004) Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Signal Pr 18:813–831

    Article  Google Scholar 

  • Wang L, Chu J, Mao W (2009) A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. Eur J Oper Res 194:184–205

    Article  MATH  Google Scholar 

  • Watson M (2005) Dynamic modeling and wear-based remaining useful life prediction of high power clutch systems. Tribol T 48(2):208–217

    Article  Google Scholar 

  • Watson GS, Wells WT (1961) On the possibility of improving the mean useful life of items by eliminating those with short lives. Technometrics 3:281–298

    Article  MathSciNet  MATH  Google Scholar 

  • Wijaya A, Lundberg J (2012) The effect of the operator, the mine room and their interaction on the measured vibration level of a scaling machine. Int J Syst Assurance Eng Manag 3(2):145–152

    Google Scholar 

  • Xiao-Sheng S, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation: a review on the statistical data driven approaches. Eur J Oper Res 213:1–14

    Article  Google Scholar 

  • Xiao-Sheng S, Wang W, Chen M, Hu C, Zhou D (2013) A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. Eur J Oper Res 226:53–66

    Article  MATH  Google Scholar 

  • Hall WJ, Wellner JA (1981) Mean residual life. Statistics and related topics. North-Holland, Amsterdam, 169–184

  • Yan J, Koc M, Lee J (2004) A prognostic algorithm for machine performance assessment and its application. Prod Plan Control 15:796–801

    Article  Google Scholar 

  • Yang J, Jay L (2007) A hybrid method for on-line performance assessment and life prediction in drilling operations. IEEE, Piscataway

    Google Scholar 

  • Yu G, Qiu H, Djurdjanovic D, Jay L (2006) Feature signature prediction of a boring process using neural network modeling with confidence bounds. Int J Adv Manuf Technol 30:614–621

    Article  Google Scholar 

  • Zhang S, Ganesan R (1997) Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery, Trans ASME. J Eng Gas Turbine Power 119:378–384

    Article  Google Scholar 

  • Zhang XD, Xu R, Chiman K, Liang SY, Xie QL, Haynes L (2005) An integrated approach to bearing fault diagnostics and prognostics. Proceedings of American Control 4:2750–2755

    Google Scholar 

  • Zhou Y, Li X, Ye X, Zhai G (2012) A remaining useful life prediction method based on condition monitoring for LED driver. IEEE Proceeding on prognostic and health management, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Ahmadzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadzadeh, F., Lundberg, J. Remaining useful life estimation: review. Int J Syst Assur Eng Manag 5, 461–474 (2014). https://doi.org/10.1007/s13198-013-0195-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-013-0195-0

Keywords

Navigation