Skip to main content

Advertisement

Log in

Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper, an artificial intelligence method particle swarm optimization (PSO) algorithm is presented for determining the optimal PI controller parameters for the indirect control active and reactive power of doubly fed induction generator (DFIG) to ensure a maximum power point tracking of a wind energy conversion system. A digital simulation is used in conjunction with the PSO algorithm to determine the optimum parameters of the PI controller. Integral time absolute error, integral absolute error and integral square error performance indices are considered to satisfy the required criteria in output active and reactive power of a DFIG. From the simulation results it is observed that the PI controller designed with PSO yields better results when compared to the traditional method in terms of performance index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdin ES, Xu W (2000) Control design and dynamic performance analysis of wind turbine-induction generator unit. IEEE Trans Energy Convers 15(1):91–96

    Article  Google Scholar 

  • Ackermann (2005) Wind power in power systems. Wiley, Chichester

    Book  Google Scholar 

  • Allaoua B, Gasbaoui B, Mebarki B (2009) Setting up PID DC Motor speed control alteration parameters using particle swarm optimization strategy. Leonardo Electron J Pract Technol 14:19–32

    Google Scholar 

  • Bekakra Y, Ben attous D (2011) Active and reactive power control of a DFIG with MPPT for variable speed wind energy conversion using sliding mode control. World Acad Sci Eng Technol (WASET) 60:1543–1549

    Google Scholar 

  • Eberhart RC, Shi Y (2000) Comparing inertial weights and constriction factor in particle swarm optimization. In: Proceedings of the international congress on evolutionary computation, San Diego, pp 84–88

  • Eltamaly AM, Alolah AI, Abdel-Rahman Mansour H (2010) Modified DFIG control strategy for wind energy applications. In: IEEE 2010 international symposium on power electronics, electrical drives, automation and motion, pp 659–653

  • Ghedamsi K, Aouzellag D (2010) Improvement of the performances for wind energy conversions systems. Int J Electr Power Energy Syst 32(9):936–945

    Article  Google Scholar 

  • Gozde H, Cengiz Taplamacioglu M (2011) Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Int J Electr Power Energy Syst 33:8–16

    Article  Google Scholar 

  • Guo-qing W, Hong-jun N, Guo-xiang W, Jing-ling Z, Wei-nan Z, Jing-feng M, Yang C (2010) On maximum power point tracking control strategy for variable speed constant frequency wind power generation. J Chongqing Univ (Engl Ed) 9(1):21–28 Article ID: 1671-8224(2010)01-0021-08

    Google Scholar 

  • Hammons TJ (2008) Integrating renewable energy sources into European grids. Int J Electr Power Energy Syst 30:462–475

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp. 1942–1948

  • Lalitha MP, Reddy VCV, Usha V (2010) Optimal DG placement for minimum real power loss in radial distribution systems using PSO. J Theor Appl Inf Technol 13(2):107–116

    Google Scholar 

  • Lin FJ, Teng LT, Lin JW, Chen SY (2009) Recurrent functional-link-based fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization. IEEE Trans Ind Electron 56(5):1557–1577

    Article  Google Scholar 

  • Lobos T, Rezmer J, Janik P, Amar H, Alonso M, Alvarez C (2009) Application of wavelets and Prony method for disturbance detection in fixed speed wind farms. Int J Electr Power Energy Syst 31:429–436

    Article  Google Scholar 

  • Machmoum M, Poitiers F (2009) Sliding mode control of a variable speed wind energy conversion system with DFIG. In: International conference and exhibition on ecologic vehicles and renewable energies, MONACO, March 26–29

  • Naka S, Genji T, Yura T, Fukuyama Y (2003) A hybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 18(1):60–68

    Article  Google Scholar 

  • Qiao W, Venayagamoorthy GK, Harley RG (2006) Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization. In: IEEE 2006 international joint conference on neural networks (IJCNN ‘06), Georgia Institute of Technology, Atlanta, pp. 1982–1987

  • Rahimi M, Parniani M (2010) Dynamic behavior analysis of doubly-fed induction generator wind turbines—the influence of rotor and speed controller parameters. Int J Electr Power Energy Syst 32(5):464–477

    Article  Google Scholar 

  • Senthil Kumar N, Gokulakrishnan J (2011) Impact of FACTS controllers on the stability of power systems connected with doubly fed induction generators. Int J Electr Power Energy Syst 33:1172–1184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djilani Ben Attous.

Appendix

Appendix

1.1 Appendix A: System parameters

Rated values: 4 kW, 220/380 V, 15/8.6 A.

Rated parameters: R s  = 1.2 Ω, R r  = 1.8 Ω, L s  = 0.1554 H, L r  = 0. 1568 H, M = 0.15 H, p = 2.

Wind turbine parameters are: R(blade radius) = 3 m, G (Gearbox) = 5.4.

Air density: ρ = 1.22 kg/m3.

1.2 Appendix B: Nomenclature

v :

Wind speed

ρ :

Air density

R :

Blade radius

P m :

Mechanical power of wind speed

C p :

Power coefficient

S w :

Swept area

λ :

Tip speed ratio

Ω t :

Angular speed of the turbine

C e :

Electromagnetic torque

C r :

Load torque

J :

Moment of inertia

β :

Bitch angle

V sd,q :

Stator d-q frame voltage

V rd,q :

Rotor d-q frame voltage

i sd,q :

Stator d-q frame current

i rd,q :

Rotor d-q frame current

ϕsd,q :

Stator d-q frame flux

ϕrd,q :

Rotor d-q frame flux

R s , R r :

Stator and rotor resistance

L s , L s :

Stator and rotor inductance

L s :

Mutual inductance

σ :

Leakage factor

p :

Number of pole pairs

T s , T r :

Statoric and rotoric time-constant

ω s , ω :

Stator and rotor d-q reference axes speed

g :

Slip coefficient

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekakra, Y., Attous, D.B. Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT. Int J Syst Assur Eng Manag 5, 219–229 (2014). https://doi.org/10.1007/s13198-013-0150-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-013-0150-0

Keywords

Navigation