Skip to main content

Advertisement

Log in

Prediction of storage time in different seafood based on color values with artificial neural network modeling

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The determination of storage time in seafood could be performed by microbiological, chemical and sensory analysis. Among these mentioned methods color changes are one part of sensory analysis and are prior acceptance criteria from the point of consumers’ view. In this study, a feedforward artificial neural network (ANN) model was developed to predict the storage time of seafood based on L*, a* and b* values. A total of 205 data set were compiled from the literature that represents the color changes of different seafood products to train and test the ANN model. Another set of data (n = 45) were used for the validation of developed ANN model. A multi-layer perceptron (MLP) was applied for the determination of agreements between input and output data. The most accurate topology were determined in accordance with the changes in the values of correlation coefficients (R2) and mean square errors (MSE) and found to be 30 neurons in the layer (R2 = 0.81 and MSE = 0.2). The performance of ANN model was evaluated based on 6 criteria such as Mean Absolute Deviation (MAD), Mean Square Errors (MSE), Residual Mean Square Errors (RMSE), Correlation Coefficient (R2), Mean Absolute Error (MAE) and F-test statistics and found to be 0.2, 0.05, 0.002, 0.8, 0.71 and 1.06, respectively. Moreover, predicted and observed storage time values were fitted and regression coefficient was found to be 0.85. In accordance with the results of this study, the proposed ANN model is accurate, reliable, and proper for the estimation of storage time in seafood products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The module developed during the current study is available from the corresponding author on reasonable request.

Abbreviations

ANN:

Artificial Neural Network

MLP:

Multi-Layer Perceptron

MSE:

Mean Square Errors

MAD:

Mean Absolute Deviation

RMSE:

Residual Mean Square Errors

MAE:

Mean Absolute Error

GDMALR:

Gradient Decent with Momentum and Adaptive Learning Rate Backpropagation

LS-SVM:

Least-Squares Support Vector Machine

PLSR:

Partial Least Square Regression

MLR:

Multiple Linear Regression

PPC:

Psychrotrophic Plate Count

TVB-N:

Total Volatile Basic Nitrogen

TMA-N:

Trimethylamine Nitrogen

References

  • Abakarov A, Teixeira A, Simpson R, Pinto M, Almonacid S (2011) Modeling of squid protein hydrolysis: artificial neural network approach. J Food Process Eng 34(6):2026–2046. https://doi.org/10.1111/j.1745-4530.2009.00567.x

    Article  CAS  Google Scholar 

  • Afari GK, Hung YC (2018) A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control 93:150–164. https://doi.org/10.1016/j.foodcont.2018.06.009

    Article  CAS  Google Scholar 

  • Agüeria D, Sanzano P, Vaz-Pires P, Rodríguez E, Yeannes MI (2016) Development of quality index method scheme for common carp (cyprinus carpio) stored in ice: shelf-life assessment by physicochemical, microbiological, and sensory quality indices. J Aquat Food Prod Technol 25(5):708–723

    Article  Google Scholar 

  • Alotaibi S, Tahergorabi R (2018) Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT, 88:203–209

  • Álvarez A, García BG, Garrido MD, Hernández MD (2008) The influence of starvation time prior to slaughter on the quality of commercial-sized gilthead seabream (Sparus aurata) during ice storage. Aquaculture 284(1–4):106–114

    Article  Google Scholar 

  • Bai JW, Xiao HW, Ma HL, Zhou CS (2018) Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. J Food Qual 2018:1–8

    Google Scholar 

  • Bhotmange M, Shastri P (2011) Application of artificial neural networks to food and fermentation technology. Artificial neural networks—industrial and control engineering applications. InTech, Rijeka, pp 201–222

  • Bohlscheid-Thomas S, Hoting I, Wahrendorf J, Boeing H (1997) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. Int J Epidem 26(SUPPL. 1):59–70. https://doi.org/10.1093/ije/26.suppl_1.s59

    Article  Google Scholar 

  • Bonilla F, Chouljenko A, Reyes V, Bechtel PJ, King JM, Sathivel S (2018) Impact of chitosan application technique on refrigerated catfish fillet quality. LWT 90:277–282

    Article  CAS  Google Scholar 

  • Boziaris IS (2015) Current trends on the study of microbiological spoilage of fresh fish. Fish Aquac J 06(01):10–12. https://doi.org/10.4172/2150-3508.10000e115

    Article  Google Scholar 

  • Brion G, Viswanathan C, Neelakantan TR, Lingireddy S, Girones R, Lees D, Vantarakis A (2005) Artificial neural network prediction of viruses in shellfish. Appl Environ Microbiol 71(9):5244–5253. https://doi.org/10.1128/AEM.71.9.5244-5253.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower AJ (2000a) Statistics for food science - VI: correlation and regression (Part A). Nutr Food Sci 30(6):295–299

    Article  Google Scholar 

  • Brower AJ (2000b) Statistics for food science - VI: correlation and regression (Part A). Nutr Food Sci 30(2):80–85

    Article  Google Scholar 

  • Bugueño G, Escriche I, Martınez-Navarrete N, del Mar Camacho M, Chiralt A (2003) Influence of storage conditions on some physical and chemical properties of smoked salmon (Salmo salar) processed by vacuum impregnation techniques. Food Chem 81(1):85–90

    Article  Google Scholar 

  • Caglak E, Cakli S, Kilinc B (2012) Effect of modified atmosphere packaging on quality and shelf life of salted bonito (Sarda sarda). J Aquat Food Prod Tech 21(3):206–221

    Article  CAS  Google Scholar 

  • Cakli S, Kilinc B, Cadun A, Dincer T, Tolasa S (2007) Quality differences of whole ungutted sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) while stored in ice. Food Control 18(5):391–397

    Article  CAS  Google Scholar 

  • Concepcion RS, Sybingco E, Lauguico SC, & Dadios EP (2019) Implementation of multilayer perceptron neural network on quality assessment of tomato puree in aerobic storage using electronic nose. In: IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM) 65–70 2019

  • Chouhan A, Kaur BP, Rao PS (2015) Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage. Innovat Food Sci Emerg Tech 29:151–160

    Article  CAS  Google Scholar 

  • Delgado-González MJ, Carmona-Jiménez Y, Rodríguez-Dodero MC, García-Moreno MV (2018) Color space mathematical modeling using microsoft excel. J Chem Educ 95(10):1885–1889. https://doi.org/10.1021/acs.jchemed.7b00681

    Article  CAS  Google Scholar 

  • Demuth H, Beale M (2002) Neural network toolbox for use with Matlab—User'S Guide Verion 3.0

  • Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O (2008) An R2 statistic for fixed effects in the linear mixed model. Stat Med 27(29):6137–6157

    Article  Google Scholar 

  • Fakhri Y, Bjørklund G, Bandpei AM, Chirumbolo S, Keramati H, Hosseini Pouya R, Ghasemi SM (2018) Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: a systematic review and carcinogenic risk assessment. Food Chem Toxic 113:267–277. https://doi.org/10.1016/j.fct.2018.01.018

    Article  CAS  Google Scholar 

  • Farajzadeh F, Motamedzadegan A, Shahidi SA, Hamzeh S (2016) The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control 67:163–170

    Article  CAS  Google Scholar 

  • Genç IY, Esteves E (2016) Computer based applications for monitoring the quality and safety of seafood. In: Genç IY, Esteves E, Diler A (eds) Handbook of Seafood Quality and SAfety Maintenance and Applications, Nova Sci. Publishers, NY

    Google Scholar 

  • Ghalati LN, Khodanazary A, Hosseini SM, Matroodi S (2017) combination effect of phosphate and vacuum packaging on quality parameters of refrigerated Aurigequula fasciata fillets. J Pack Tech Res 1(2):101–112

    Article  Google Scholar 

  • Giannakourou MC, Taoukis PS (2019) Meta-analysis of kinetic parameter uncertainty on shelf life prediction in the frozen fruits and vegetable Chain. Food Eng Revs 11(1):14–28. https://doi.org/10.1007/s12393-018-9183-0

    Article  CAS  Google Scholar 

  • Gonzales- Barron U, Cadavez V, Alvarenga V, Silva LP, Sant’Ana A (2018) An extended bigelow-type meta-regression model describing the heat resistance of neosartorya spores. AgroStat Conference.

  • Gonzales-Barron U, Gonçalves-Tenório A, Rodrigues V, Cadavez V (2017) Foodborne pathogens in raw milk and cheese of sheep and goat origin: a meta-analysis approach. Curr Opin Food Sci 18:7–13. https://doi.org/10.1016/j.cofs.2017.10.002

    Article  Google Scholar 

  • Gorgulu O (2012) Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks. S Afr J Anim Sci. https://doi.org/10.4314/sajas.v42i3.10

    Article  Google Scholar 

  • Goyal S (2013) Artificial neural networks (ANNs) in food science–a review. Int J Sci World 1(2):19–28. https://doi.org/10.14419/ijsw.v1i2.1151

    Article  Google Scholar 

  • Gutérrez Guzmán N, Fernández Segovia I, Fuentes López A, Ruiz Rico M, Barat Baviera JM (2015) Physico-chemical and microbiological changes in commercial tilapia (Oreochromis niloticus) during cold storage. Vitae 22(2):140–147

    Google Scholar 

  • Hagan MT, Menhaj MB (1996) Training feedforward networks with the marquardt algorithm. Brief Papers 32(2):273–344. https://doi.org/10.1006/brcg.1996.0066

    Article  Google Scholar 

  • Hansen TB, Abdalas S, Al-Hilali I, Hansen LT (2021) Predicting the effect of salt on heat tolerance of Listeria monocytogenes in meat and fish products. Int J Food Microb 1:109265

    Article  Google Scholar 

  • Hassoun A, Karoui R (2017) Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: advantages and limitations. Crit Rev Food Sci Nutrition 57(9):1976–1998

    CAS  Google Scholar 

  • Hernández MD, López MB, Álvarez A, Ferrandini E, García BG, Garrido MD (2009) Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem 114(1):237–245

    Article  Google Scholar 

  • Ji H, Zhang L, Liu S, Qu X, Zhang C, Gao J (2012) Optimization of microbial inactivation of shrimp by dense phase carbon dioxide. Int J Food Microb 156(1):44–49. https://doi.org/10.1016/j.ijfoodmicro.2012.02.020

    Article  CAS  Google Scholar 

  • Kalathingal MSH, Basak S, Mitra J (2020) Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. J Food Process Eng 43(1):e13128

    Article  Google Scholar 

  • Khanzadi S, Gharibzadeh S, Raoufy MR, Razavilar V, Khaksar R, Radmehr B (2010) Application of artificial neural networks to predict Clostridium botulinum growth as a function of Zataria multiflora essential oil, pH. NaCl and Temperature J Food Saf 30(2):490–505. https://doi.org/10.1111/j.1745-4565.2010.00222.x

    Article  CAS  Google Scholar 

  • Khoshnoudi-Nia S, Moosavi-Nasab M (2019) Prediction of various freshness indicators in fish fillets by one multispectral imaging system. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Koyama K, Tanaka M, Cho BH, Yoshikawa Y, Koseki S (2021) Predicting sensory evaluation of spinach freshness using machine learning model and digital images. Plos one 16(3):e0248769

    Article  CAS  Google Scholar 

  • Kuuliala L, Al Hage Y, Ioannidis AG, Sader M, Kerckhof FM, Vanderroost M, Boon N, De Baets B, De Meulenaer B, Ragaert P, Devlieghere F (2018) Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres. Food Microb 70:232–244

    Article  CAS  Google Scholar 

  • Lalabadi HM, Sadeghi M, Mireei SA (2020) Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquac Eng 90:102076

    Article  Google Scholar 

  • León K, Mery D, Pedreschi F, León J (2006) Color measurement in L*a*b* units from RGB digital images. Food Res Int 39(10):1084–1091. https://doi.org/10.1016/j.foodres.2006.03.006

    Article  Google Scholar 

  • Liu X, Jiang Y, Shen S, Luo Y, Gao L (2015) Comparison of Arrhenius model and artificial neuronal network for the quality prediction of rainbow trout (Oncorhynchus mykiss) fillets during storage at different temperatures. LWT - Food Sci Tech 60(1):142–147. https://doi.org/10.1016/j.lwt.2014.09.030

    Article  CAS  Google Scholar 

  • López CC, Serio A, Montalvo C, Ramirez C, Álvarez JAP, Paparella A, Mastrocola D, Martuscelli M (2017) Effect of nisin on biogenic amines and shelf life of vacuum packaged rainbow trout (Oncorhynchus mykiss) fillets. J Food Sci Tech 54(10):3268–3277

    Article  Google Scholar 

  • Lu G, Zhu A, Fang H, Dong Y, Wang WX (2019) Establishing baseline trace metals in marine bivalves in China and worldwide: meta-analysis and modeling approach. Sci Total Environ 669:746–753. https://doi.org/10.1016/j.scitotenv.2019.03.164

    Article  CAS  PubMed  Google Scholar 

  • Luo MR (2006) Applying colour science in colour design. Optics Laser Technol 38(4–6):392–398. https://doi.org/10.1016/j.optlastec.2005.06.025

    Article  Google Scholar 

  • Masniyom P (2011) Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Sonklanakarin J Sci Tech 33(2):181

    CAS  Google Scholar 

  • Martelli R, Parisi G, Lupi P, Bonelli A, Zotte AD, Franci O (2013) Effect of rearing system on body traits and fillet quality of meagre (Argyrosomus regius, Asso 1801) chilled for a short time. Italian J Anim Sci 12(2):e30

    Article  Google Scholar 

  • Martinez-Rios V, Dalgaard P (2018) Prevalence of listeria monocytogenes in European cheeses: A systematic review and meta-analysis. Food Control 84:205–214. https://doi.org/10.1016/j.foodcont.2017.07.020

    Article  CAS  Google Scholar 

  • Martinsdóttir E, Schelvis R, Hyldig G, Sveinsdóttir K (2009) Sensory evaluation of seafood: methods. Quality, Safety and Authenticity, In Fishery Products. https://doi.org/10.1002/9781444322668.ch4

    Book  Google Scholar 

  • Mchazime I, Kapute F (2018) Sensory and nutrient quality of wild captured Oreochromis shiranus (Boulenger, 1897) stored at ambient temperature. Int Food Res J 25(1):127–132

    CAS  Google Scholar 

  • Navotas IC, Santos CNV, Balderrama EJM, Candido FEB, Villacanas AJE, Velasco JS (2018) Fish identification and freshness classification through image processing using artificial neural network. ARPN J Eng Appl Sci 13(18):4912–4922

    Google Scholar 

  • Niamnuy C, Kerdpiboon S, Devahastin S (2012) Artificial neural network modeling of physicochemical changes of shrimp during boiling. LWT - Food Sci Technol 45(1):110–116. https://doi.org/10.1016/j.lwt.2011.07.013

    Article  CAS  Google Scholar 

  • Nourbakhsh H, Emam-Djomeh Z, Omid M, Mirsaeedghazi H, Moini S (2014) Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Comput Electron Agric 102:1–9

    Article  Google Scholar 

  • Poli BM, Messini A, Parisi G, Scappini F, Vigiani V, Giorgi G, Vincenzini M (2006) Sensory, physical, chemical and microbiological changes in European sea bass (Dicentrarchus labrax) fillets packed under modified atmosphere/air or prepared from whole fish stored in ice. Int J Food Sci Tech 41(4):444–454

    Article  CAS  Google Scholar 

  • Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS (2020) A comprehensive review on freshness of fish and assessment: analytical methods and recent innovations. Food Res Int 133:109157

    Article  CAS  Google Scholar 

  • Prado-Silva L, Cadavez V, Gonzales-Barron U, Rezende ACB, Sant’Ana AS (2015) Meta-analysis of the effects of sanitizing treatments on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes inactivation in fresh produce. App Environ Microbiol 81(23):8008–8021. https://doi.org/10.1128/AEM.02216-15

    Article  CAS  Google Scholar 

  • Razavi MA, Mortazavi A, Mousavi M (2004) Application of neural networks for crossflow milk ultrafiltration simulation. Int Dairy J 14(1):69–80

    Article  Google Scholar 

  • Rehman MZ, Nawi NM (2011) The effect of adaptive momentum in improving the accuracy of gradient descent back propagation algorithm on classification problems. In: International conference on software engineering and computer systems. Springer, Berlin, Heidelberg, pp 380–390

    Chapter  Google Scholar 

  • Ribeiro CM, Stefani LM, Lucheis SB, Okano W, Cruz JCM, Souza GV, Afreixo V (2018) Methicillin-resistant Staphylococcus aureus in poultry and poultry meat: a meta-analysis. J Food Protect 81(7):1055–1062. https://doi.org/10.4315/0362-028X.JFP-17-445

    Article  CAS  Google Scholar 

  • Secci G, Parisi G, Meneguz M, Iaconisi V, Cornale P, Macchi E, Gasco L, Gai F (2018) Effects of a carbon monoxide stunning method on rigor mortis development, fillet quality and oxidative stability of tench (Tinca tinca). Aquaculture 493:233–239

    Article  CAS  Google Scholar 

  • Sharaf Eddin A, Tahergorabi R (2017) Application of a surimi-based coating to improve the quality attributes of shrimp during refrigerated storage. Foods 6(9):76

    Article  Google Scholar 

  • Silva BN, Cadavez V, Teixeira JA, Gonzales-Barron U (2017) Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Curr Opin Food Sci 18:21–28. https://doi.org/10.1016/j.cofs.2017.10.001

    Article  Google Scholar 

  • Socaciu MI, Semeniuc C, Vodnar D (2018) Edible films and coatings for fresh fish packaging: focus on quality changes and shelf-life extension. Coatings 8(10):366. https://doi.org/10.3390/coatings8100366

    Article  CAS  Google Scholar 

  • Sofu A, Ekinci FY (2007) Estimation of storage time of yogurt with artificial neural network modeling. J Dairy Sci 90(7):3118–3125. https://doi.org/10.3168/jds.2006-591

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Wang J, Li P, Xie J (2020) Storage time prediction of glazed frozen squids during frozen storage at different temperatures based on neural network. Int J Food Prop 23(1):1663–1677

    Article  CAS  Google Scholar 

  • Willmoth CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  • Wrolstad RE, Smith DE (2010) Color analysis. In: Nielsen SS (ed) Food analysis. Springer, United States, pp 573–586.

    Chapter  Google Scholar 

  • Xu Z, Liu X, Wang H, Hong H, Luo Y (2017) Comparison between the Arrhenius model and the radial basis function neural network (RBFNN) model for predicting quality changes of frozen shrimp (Solenocera melantho). Int J Food Prop 20(11):2711–2723. https://doi.org/10.1080/10942912.2016.1248292

    Article  CAS  Google Scholar 

  • Yu H, Li J, Luan Y (2018) Meta-analysis of soil mercury accumulation by vegetables. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-19519-3

    Article  CAS  Google Scholar 

  • Zhang K, Zhang B, Chen B, Jing L, Zhu Z, Kazemi K (2016) Modeling and optimization of Newfoundland shrimp waste hydrolysis for microbial growth using response surface methodology and artificial neural networks. Mar Pollut Bull 109(1):245–252. https://doi.org/10.1016/j.marpolbul.2016.05.075

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

İsmail Yüksel GENÇ has compiled, analyzed the data, developed the model and module and constructed the article.

Corresponding author

Correspondence to İsmail Yüksel Genç.

Ethics declarations

Conflict of interest

All the authors that they have no conflict of interest.

Ethical approval

I declared that I followed the ethical rules and good scientific practices as mentioned in Journal of Food Science and Technology Author Guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Weights to layer 1 from input 1.

[0.215 1.0299 0.44519; 0.81905 − 0.25125 0.60449; 0.71524 − 0.40438 0.18169; 0.15737 0.53082 − 0.8139; − 1.0941 − 0.49792 0.13041; − 0.76441 0.89052 − 0.9176; 0.1436 0.79021 0.50513; 0.77111 − 0.18732 0.33336; 0.65459 − 0.29249 0.20499; 0.70678 0.48637 − 0.5326].

Biases to layer 1.

[0.26711; 0.41961; − 0.23041; − 0.84587; 0.53745; 0.59623; 0.15577; 0.24032; 0.52489; − 0.52791]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genç, İ.Y. Prediction of storage time in different seafood based on color values with artificial neural network modeling. J Food Sci Technol 59, 2501–2509 (2022). https://doi.org/10.1007/s13197-021-05269-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-021-05269-0

Keywords

Navigation