Abstract
Soymilk is a plant based product which is a rich source of nutrients. However, various harmful compounds including allergens, anti-nutritional factors, and biogenic amines (BAs) exist in soybeans that may be transferred into soymilk. These compounds cause difficulties for consumers from mild to severe symptoms. Soymilk production is considered as a critical step in quantity of harmful compounds in final product. Common steps in soy milk manufacturing include soaking, grinding, and heating process. Allergens contents could be decreased by heating alone or in combination with structural modifiers and fermentation. BAs could be reduced by optimizing fermentation process and using suitable strains, especially BAs degradable types. Soaking, grinding and heating of soybeans in water are considered as effective methods for inactivation of antinutritional factors. Isoflavones are soy phytochemicals, which potentially leads to breast cancer in some women, can be converted to less bioavailable forms during processing. Other treatments such as high hydrostatic pressure and irradiation are also effective in harmful compounds reduction. Combination of the processes is more effective in harmful compounds removal. Considering the increasing trends in soymilk consumption, this review is focused on introduction of harmful compounds in soymilk and investigating the effects of processing condition on their concentration.
Similar content being viewed by others
Abbreviations
- BA:
-
Biogenic amines
- WHO:
-
World Hygiene Organization
- U.S. FDA:
-
United States Food and Drug Administration
- SPI:
-
Soybean protein isolates
- PUV:
-
Pulsed ultraviolet
- MAO:
-
Mono amine oxidase
- NaCl:
-
Sodium chloride
- PI:
-
Protease inhibitors
- UHT:
-
Ultra-high temperature
- ER:
-
Estrogen receptors
References
Amnuaycheewa P, de Mejia EG (2010) Purification, characterisation, and quantification of the soy allergen profilin (Gly m 3) in soy products. Food Chem 119(4):1671–2168
Ari M, Ayanwale B, Adama T, Olatunji E (2012) Evaluation of the chemical composition and anti nutritional factors (ANFs) levels of different thermally processed soybeans. Asian J Agric Res 6(2):91–98
Avilés-Gaxiola S, Chuck-Hernández C, Serna Saldivar SO (2018) Inactivation methods of trypsin inhibitor in legumes: a review. J Food Sci 83(1):17–29
Baú T, Garcia S, Ida E (2015) Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. Int J Food Sci Nutr 66(8):845–850
Biscola V, de Olmos AR, Choiset Y, Rabesona H, Garro MS, Mozzi F, Franco B (2017) Soymilk fermentation by Enterococcus faecalis VB43 leads to reduction in the immunoreactivity of allergenic proteins β-conglycinin (7S) and glycinin (11S). Benef Microbes 8(4):635–643
Cheng S, Xu Y, Lan X (2020) Isolation, characterization, and application of biogenic amines-degrading strains from fermented food. J Food Saf 40(1):e12716
da Silva Fernandes M, Lima FS, Rodrigues D, Handa C, Guelfi M, Garcia S, Ida EI (2017) Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chem 229:373–380
de Lima FS, Ida EI (2014) Optimisation of soybean hydrothermal treatment for the conversion of β-glucoside isoflavones to aglycones. LWT-Food Sci Technol 56(2):232–239
Durak-Dados A, Michalski M, Osek J (2020) Histamine and other biogenic amines in food. J Vet Res. https://doi.org/10.2478/jvetres-2020-0029
Eisen B, Ungar Y, Shimoni E (2003) Stability of isoflavones in soy milk stored at elevated and ambient temperatures. J Agric Food Chem 51(8):2212–2215
Ekezie F-GC, Cheng J-H, Sun D-W (2018) Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends Food Sci Technol 74:12–25
Hackler L, Van Buren J, Steinkraus K, El Rawi I, Hand D (1965) Effect of heat treatment on nutritive value of soymilk protein fed to weanling rats. J Food Sci 30(4):723–728
Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, Perono-Garoffo L, Vieths S (2009) Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol 123(2):452–458
Jiang Y, Li L, He F, Yan W, Tang Y, Yang R, Zhao W (2021) Highly effective inactivation of anti-nutritional factors (lipoxygenase, urease and trypsin inhibitor) in soybean by radio frequency treatment. Int J Food Sci Technol 56(1):93–102
Kim JJ, Kim SH, Hahn SJ, Chung IM (2005b) Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Res Int 38(4):435–444
Kim J-H, Kim D-H, Ahn H-J, Park H-J, Byun M-W (2005a) Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control 16(1):43–49
Kokawa M, Nishi K, Ashida H, Trivittayasil V, Sugiyama J, Tsuta M (2017) Predicting the heating temperature of soymilk products using fluorescence fingerprints. Food Bioprocess Technol 10(3):462–468
Kwok K, Qin W, Tsang J (1993) Heat inactivation of trypsin inhibitors in soymilk at ultra-high temperatures. J Food Sci 58(4):859–862
Kwok KC, Liang HH, Niranjan K (2002) Mathematical modelling of the heat inactivation of trypsin inhibitors in soymilk at 121–154° C. J Sci Food Agric 82(3):243–247
Li T, Bu G, Xi G (2020) Effects of heat treatment on the antigenicity, antigen epitopes, and structural properties of β-conglycinin. Food chem 346:128962
Li D-W, Liang J-J, Shi R-Q, Wang J, Ma Y-L, Li X-T (2019) Occurrence of biogenic amines in sufu obtained from Chinese market. Food Sci Biotechnol 28(2):319–327
Li H, Jia Y, Peng W, Zhu K, Zhou H, Guo X (2018) High hydrostatic pressure reducing allergenicity of soy protein isolate for infant formula evaluated by ELISA and proteomics via Chinese soy-allergic children’s sera. Food Chem 269:311–317
Li D, Ma Y, Liang J, Shi R, Wang J, Guo S, Li X (2020) Effects of different production technologies (fermented strains and spices) on biogenic amines in sufu fermentation. J Food Process Preserv 44(8):e14597
Licandro H, Ho PH, Nguyen TKC, Petchkongkaew A, Van Nguyen H, Chu-Ky S, Waché Y (2020) How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control 110:106957
Mannaa M, Seo Y-S, Park I (2020) Addition of coriander during fermentation of korean soy sauce (gangjang) causes significant shift in microbial composition and reduction in biogenic amine levels. Foods 9(10):1346
Meinlschmidt P, Ueberham E, Lehmann J, Reineke K, Schlüter O, Schweiggert-Weisz U, Eisner P (2016) The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innov Food Sci Emerg Technol 38:374–383
Mendoza-Avendaño, C., Meza-Gordillo, R., Ovando-Chacón, S., Luján-Hidalgo, M., Ruiz-Cabrera, M., Grajales-Lagunes, A., Abud-Archila, M. (2019). EVALUATION OF BIOACTIVE AND ANTI-NUTRITIONAL COMPOUNDS DURING SOY MILK FERMENTATION WITH Lactobacillus plantarum BAL-03-ITTG AND Lactobacillus fermentum BAL-21-ITTG. Revista Mexicana de Ingeniería Química, 18(3), 967-978
Min CW, Hyeon H, Gupta R, Park J, Cheon YE, Lee GH, Park SU (2020) Integrated proteomics and metabolomics analysis highlights correlative metabolite-protein networks in soybean seeds subjected to warm-water soaking. J Agric Food Chem 68(30):8057–8067
MollakhaliliMeybodi N, Mortazavian AM, BahadoriMonfared A, Sohrabvandi S, AghaeiMeybodi F (2017) Phytochemicals in cancer prevention: a review of the evidence. Int J Cancer Manag 10(1):e7219. https://doi.org/10.17795/ijcp-7219
Morales-de la Peña M, Martín-Belloso O, Welti-Chanes J (2018) High-power ultrasound as pre-treatment in different stages of soymilk manufacturing process to increase the isoflavone content. Ultrason Sonochem 49:154–160
Mumba P, Chilera F, Alinafe G (2004) The effect of the length of soaking time on trypsin inhibitor, crude protein and phosphorus contents of soybeans (Glycine max). Int J Consum Stud 28(1):49–54
Munasir Z, Sekartini R (2020) Soy isolate protein formula: the usage beyond allergy indication. World Nutr J 4(1):24–29
Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H (2003) Soy isoflavones: a safety review. Nutr Rev 61(1):1–33
Niyibituronsa M, Onyango AN, Gaidashova S, Imathiu S, Uwizerwa M, Ochieng EP, Harvey J (2019) The effect of different processing methods on nutrient and isoflavone content of soymilk obtained from six varieties of soybean grown in Rwanda. Food Sci Nutr 7(2):457–464
Nowshin H, Devnath K, Begum AA, Mazumder MAR (2018) Effects of soaking and grinding conditions on anti-nutrient and nutrient contents of soy milk. J Bangladesh Agric Univ 16(1):158–163
Panda R, Tetteh AO, Pramod SN, Goodman RE (2015) Enzymatic hydrolysis does not reduce the biological reactivity of soybean proteins for all allergic subjects. J Agric Food Chem 63(43):9629–9639
Peñas E, Préstamo G, Polo F, Gomez R (2006) Enzymatic proteolysis, under high pressure of soybean whey: analysis of peptides and the allergen Gly m 1 in the hydrolysates. Food Chem 99(3):569–573
Qiu S, Wang Y, Cheng Y, Liu Y, Yadav MP, Yin L (2018) Reduction of biogenic amines in sufu by ethanol addition during ripening stage. Food Chem 239:1244–1252
Rui X, Wang M, Zhang Y, Chen X, Li L, Liu Y, Dong M (2017) Optimization of soy solid-state fermentation with selected lactic acid bacteria and the effect on the anti-nutritional components. J Food Process Preserv 41(6):e13290
Seo S-H, Cho S-J (2016) Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis. LWT 70:208–212
Shalaby A (2000) Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking. Food Nahrung 44(1):23–27
Shashego, Z. (2019). Soaking time and temperature on condensed tannin and phytic acid of soybean products.
Stukus DR, Mikhail I (2016) Pearls and pitfalls in diagnosing IgE-mediated food allergy. Curr Allergy Asthma Rep 16(5):34
Ueberham E, Spiegel H, Havenith H, Rautenberger P, Lidzba N, Schillberg S, Lehmann J (2019) Simplified Tracking of a Soy Allergen in Processed Food Using a Monoclonal Antibody-Based Sandwich ELISA Targeting the Soybean 2S Albumin Gly m 8. J Agric Food Chem 67(31):8660–8667
Vagadia BH, Vanga SK, Raghavan V (2017) Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci Technol 64:115–125
Verhoeckx KC, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, van der Bolt N (2015) Food processing and allergenicity. Food Chem Toxicol 80:223–240
Xia J, Zu Q, Yang A, Wu Z, Li X, Tong P, Chen H (2019) Allergenicity reduction and rheology property of Lactobacillus-fermented soymilk. J Sci Food Agric 99(15):6841–6849
Yang A, Zuo L, Cheng Y, Wu Z, Li X, Tong P, Chen H (2018) Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct 9(3):1899–1909
Yang B, Tan Y, Kan J (2020) Regulation of quality and biogenic amine production during sufu fermentation by pure Mucor strains. LWT 117:108637
Yang B, Tan Y, Kan J (2021) Determination and mitigation of chemical risks in sufu by NaCl and ethanol addition during fermentation. J Food Compos Anal 98:103820
Yang H, Qu Y, Li J, Liu X, Wu R, Wu J (2020) Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT 128:109442
Yuan G, Liu Y, Liu G, Wei L, Wen Y, Huang S, Cheng J (2019) Associations between semen phytoestrogens concentrations and semen quality in Chinese men. Environ Int 129:136–144
Zhao J, Niu C, Du S, Liu C, Zheng F, Wang J, Li Q (2020) Reduction of biogenic amines formation during soybean paste fermentation by using Staphylococcus carnosus M43 and Pediococcus acidilactici M28 as starter culture. LWT 133:109917
Zhao T-T, Jin F, Li J-G, Xu Y-Y, Dong H-T, Liu Q, Miao Z-F (2019) Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: a meta-analysis of prospective cohort studies. Clin Nutr 38(1):136–145
Zheng L, Li D, Li ZL, Kang LN, Jiang YY, Liu XY, Wang JH (2017) Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal. Lett Appl Microbiol 65(6):520–526
Zhu J, Deng H, Yang A, Wu Z, Li X, Tong P, Chen H (2019) Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct 10(9):5485–5497
Zhu Y-Y, Thakur K, Feng J-Y, Cai J-S, Zhang J-G, Hu F, Wei Z-J (2020) Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes. Appl Microbiol Biotechnol 104:5759–5772
Acknowledgements
This study is related to a project of Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. We also appreciate the “Research Center for Food Hygiene and Safety” in Shahid Sadoughi University of Medical Sciences for their support of this study.
Funding
None.
Author information
Authors and Affiliations
Contributions
NMM had the idea for the article. LZ and MA performed the literature search and data analysis. All authors drafted and/or critically revised the work.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mollakhalili-Meybodi, N., Arab, M. & Zare, L. Harmful compounds of soy milk: characterization and reduction strategies. J Food Sci Technol 59, 3723–3732 (2022). https://doi.org/10.1007/s13197-021-05249-4
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13197-021-05249-4