Abstract
The effect of incorporating different proportions (5, 10, 15 and 20%) of cashew nut protein concentrate (CNPC) on the physicochemical properties, antioxidant activity and consumer acceptability of bread was investigated. Substitution of wheat flour with CNPC increased the water and oil absorption capacity, swelling capacity, peak and final viscosities. Substitution of CNPC in wheat bread significantly increased the protein (12.69–22.04 g/100 g), ash, crude fiber, calcium, magnesium, iron (2.09–3.36 mg/100 g), phosphorus and zinc (0.79–1.57 mg/100 g) content, while carbohydrate value decreased. Substitution of wheat flour with CNPC in bread increased the loaf weight while specific volume decreased (4.36–2.21 cm3/g). Acceptable bread was prepared with up to 15% CNPC; which contained the highest total phenolics (2.64 mg GAE/g), DPPH radical scavenging activity (71.22 µmol TE/100 g), ferric reducing antioxidant power (427.77 µmol TE/100 g) and ABTS radical scavenging activity (195.68 µmol TE/100 g) than the 100% wheat bread (1.28 mg GAE/g, 40.81 µmol TE/100 g, 375.62 µmol TE/100 g and 154.02 µmol TE/100 g).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- CNP:
-
Cashew nut Powder
- CNPC:
-
Cashew nut protein concentrate
- OAC:
-
Oil absorption capacity
- RVA:
-
Rapid visco analyzer
- SC:
-
Swelling capacity
- WAC:
-
Water absorption capacity
- WF:
-
Wheat flour
References
AACC (2000) Approved methods of the AACC international, methods 44–17, 76–13, 08–16, 32–40 and 35–05, 10th edn. The Association AACC, St. Paul, MN
Abu JO, Muller K, Duodu KG, Minnaar A (2005) Functional properties of cowpea (Vigna unguiculata L. Walp) flours and pastes as affected by γ-irradiation. Food Chem 93(1):103–111. https://doi.org/10.1016/j.foodchem.2004.09.010
Adebiyi JA, Obadina AO, Mulaba-Bafubiandi AF, Adebo OA, Kayitesi E (2016) Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. J Cereal Sci 70:132–139
Ahmed MI, Sulieman AA, Xu X, Na Y, Mahdi AA, Mohammed JK (2019) Effect of preprocessing methods on the physicochemical and functional properties of koreeb (Dactyloctenium aegyptium) seeds. J Cereal Sci 87:280–285
Alvarez-Jubete L, Arendt EK, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Tech 21(2):106–113. https://doi.org/10.1016/j.tifs.2009.10.014
Alzuwaid NT, Pleming D, Fellows CM, Sissons M (2021) Fortification of durum wheat spaghetti and common wheat bread with wheat bran protein concentrate-impacts on nutrition and technological properties. Food Chem 334(1):127497. https://doi.org/10.1016/j.foodchem.2020.127497
AOAC (2005) Association of official analytical chemists. In W. Horwitz W, Latimer GW Jr. (Eds.), Official methods of analysis 18th ed, Gaithersburg, MD: AOAC International, pp 1e14
Aremu MO, Olonisakin A, Bako DA, Madu PC (2006) Compositional studies and physicochemical characteristics of cashew nut (Anarcadium occidentale) flour. Pak J Nutr 5:328–333
Aydemir LY, Yemenicioğlu A (2013) Potential of Turkish Kabuli type chickpea and gen and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Science and Technology 50:686–694
Beta T, Nam S, Dexter JE, Sapirstein HD (2005) Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chem 82:390–393
Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184
Chinma CE, Anuonye JC, Ocheme OB, Abdullahi S, Oni S, Yakubu CM, Azeez SO (2016) Effect of acha and bambara nut sourdough flour addition on the quality of bread. LWT 70:223–228
Chinma CE, Ilowefah M, Shammugasamy B, Mohammed M, Muhammad K (2015) Effect of addition of protein concentrates from natural and yeast fermented rice bran on the rheological and technological properties of wheat bread. Int J Food Sci Technol 50:290–297
Coşkun Ö, Pehlivanoğlu H, Gülseren İ (2020) Pilot scale assessment for seed protein enrichment of gluten-free breads at varying water content levels and after protein modification treatments. J Food Process Preserv 44:e14512
Du SK, Jiang H, Yu X, Jane JL (2014) Physicochemical and functional properties of whole legume flour. LWT-Food Sci Technol 55:308–313
Dhen N, Rejeb IB, Boukhris H, Damergi C, Gargouri M (2018) Physicochemical and sensory properties of wheat-Apricot kernels composite bread. LWT 95:262–267
EL-massry K, Farouk A, EL-ghorab A, Volatile H (2003) Constituents of glutathione–ribose model system and its antioxidant activity. Amino Acid, 24:171–177.
Franco-Miranda H, Chel-Guerrero L, Gallegos-Tintoré S, Castellanos-Ruelas A, Betancur- Ancona D (2017) Physicochemical, rheological, bioactive and consumer acceptance analyses of concha-type Mexican sweet bread containing Lima bean or cowpea hydrolysates. LWT 80:250–256
Gadani BC, Miléski KML, Peixoto LS, Agostini JS (2017) Physical and chemical characteristics of cashew nut flour stored and packaged with different packages. Food Sci and Technol Campinas 37(4):657–662
Emelike NJT, Akusu MO (2019) Physicochemical, mineral and sensory characteristics of cashew nut milk. Int J Food Sci Biotechnol 4(1):1–6
Greene JL, Bovell-Benjamin AC (2004) Macroscopic and sensory evaluation of bread supplemented with sweet-potato flour. J Food Sci 69(4):167–173
Haber M, Mishyna M, Martinez JI, Benjamin O (2019) The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT 115:108395
Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B (2017) Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6:53
Jideani IA, Jideani VA (2011) Developments on the cereal grains Digitaria exilis (acha) and Digitaria iburua (iburu). J Food Sci Technol 48:251–259
Millar KA, Barry-Ryan C, Burke R, McCarthy S, Gallagher E (2019) Dough properties and baking characteristics of white bread, as affected by addition of raw, germinated and toasted pea flour. Innov Food Sci Emerg Technol 56:102189
Mohammed I, Ahmed AR, Senge B (2012) Dough rheology and bread quality of wheat–chickpea flour blends. Ind Crops Prod 36(1):196–202
Mondal A, Datta A (2008) Bread baking–a review. J Food Eng 86:465–474
Morad M, Leung H, Hsu D, Finney P (1980) Effect of germination on physicochemical and bread-baking properties of yellow pea, lentil, and faba bean flours and starches. Cereal Chem 57:390–396
Mukuddem-Petersen J, Oosthuizen W, Jerling JC (2005) A systematic review of the effects of nuts on blood lipid profiles in humans. J Nutr 135:2082–2089
Olukomaiya OO, Adiamo OQ, Fernando WC, Mereddy R, Li X, Sultanbawa Y (2020) Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem 315:126238
Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical, and analytical aspects. Clin Chim Acta 294:1–26
Silva BA, Ferreres F, Malva JO, Dias AC (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167
Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158
Sze-Tao KWC, Sathe SK (2004) Functional properties and in-vitro digestibility of almond (Prunus dulcis L) protein isolate. Food Chem 69:153–160
Vincent OS, Adewale IT, Dare O, Rachael A, Bolanle JO (2009) Proximate and mineral composition of roasted and defatted cashew nut (Anarcadium occidentale) flour. Pakistán J Nutr 8:1649–1651
Wagner JR, Sorgentini DA, Anon MC (2000) Relationship between solubility and surface hydrophobicity as an indicator of modification during preparation processes of commercial and laboratory prepared soy-protein isolates. J of Agri Food Chem 48:3159–3165
Wu F, Chen H, Yang N, Wang J, Duan X, Jin Z, Xu X (2013) Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. J Cereal Sci 58:263–271
Yadahally NS, Vadakkoot BS, Vishwas MP, Vasudeva S (2012) Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their flour functionality. Food Chem 131:462–468
Zorzi CZ, Garske RP, Flôres SH, Thys RCS (2020) Sunflower protein concentrate: a possible and beneficial ingredient for gluten-free bread. Innov Food Sci Emerg Technol 66:102539
Acknowledgements
The authors thank Mr Yohanna for his technical support.
Author information
Authors and Affiliations
Contributions
SA: Conceptualization, Data curation, Formal analysis, Writing-original draft and revision of reviewed manuscript. CC: Conceptualization, Reading of original draft of manuscript, reviewing and editing of original and reviewed manuscript. AM: Data curation, Formal analysis, analyses of data. RA: Data curation, Formal analysis, analyses of data. FK: Reading of original draft of manuscript, Review, editing and revision of reviewed manuscript. AY: Methodology, Formal analysis, analyses of data.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Azeez, S., Chinma, C.E., Makanjuola, A.J. et al. Effect of cashew nut protein concentrate substitution on the physicochemical properties, antioxidant activity and consumer acceptability of wheat bread. J Food Sci Technol 59, 2200–2208 (2022). https://doi.org/10.1007/s13197-021-05233-y
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13197-021-05233-y