Skip to main content
Log in

The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript


Manuka honey (MH) stands out from other honey types as a unique super-food with clinically proven antimicrobial and wound healing activities. Its unique traits and the broad range of applications (i.e. food, cosmetics, nutraceuticals /natural health products) have marked up its price 6 to 25 times than other honey types. Concurrent to the increased market demand, more fraudulence of MH emerged. This urged for the employment of analytical tools for the authenticity and quality assessment of MH and has been the focus of many researchers during the last decades. Our main focus was to review the literature dealing with MH authenticity during the period from 2010 to mid-2021 comprehensively via the Scifinder ( and Web of Science ( research engines. We used “manuka honey analysis”, “manuka honey quality control”, and “manuka honey authenticity” as a search terms, applied Boolean operators ‘AND/OR’ combination, performing in Jan 2017 from the following electronic databases. The state-of-the-art analytical approaches and respective chemical markers of MH are highlighted. The present study capitalizes on the most updated methodologies employed for the quality control and analysis of MH to ensure its authenticity and adulteration detection. The unique constituents of MH allowed for its successful discrimination through various analytical platforms, including mass spectrometry coupled to suitable chromatographic separation (i.e. GC–MS and LC–MS), nuclear magnetic resonance (NMR), and fluorescence analysis. Moreover, chemometric tools present potential for MH discrimination and has yet to be capitalized more upon for MH quality control analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


Similar content being viewed by others



Manuka Honey


Quality control


Unique Manuka Factor


Gas Chromatography-Mass Spectrometry


High-Performance Liquid Chromatography


Nuclear Magnetic Resonance


Energy-Dispersive X-Ray Fluorescence


  • Adams CJ et al (2009) The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohyd Res 344(8):1050–1053

    Article  CAS  Google Scholar 

  • Adams RW et al (2011) Resolving natural productepimer spectra by matrix-assisted DOSY. Org Biomol Chem 9(20):7062–7064

    Article  CAS  PubMed  Google Scholar 

  • AOAC (2013). AOAC Official Method 998.12, C-4 plant sugars in honey, first revision. AOAC International, Gaithersburg, MD, USA: 44.44.18A

  • Beitlich N et al (2014) Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. J Agric Food Chem 62(27):6435–6444

    Article  CAS  PubMed  Google Scholar 

  • Beitlich N et al (2016a) Fluorescent pteridine derivatives as new markers for the characterization of genuine monofloral New Zealand manuka (Leptospermum scoparium) honey. J Agric Food Chem 64(46):8886–8891

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov S et al (2004) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35(Suppl. 1):S4–S17

    Article  Google Scholar 

  • Bong J et al (2016) Fluorescence markers in some New Zealand honeys. Food Chem 192:1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Bong J et al (2017) Leptosperin is a distinct and detectable fluorophore in Leptospermum honeys. Food Chem 214:102–109

    Article  CAS  PubMed  Google Scholar 

  • Bong J et al (2018) New approach: chemical and fluorescence profiling of NZ honeys. Food Chem 267:355–367

    Article  CAS  PubMed  Google Scholar 

  • Bong J et al (2021) Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chem 350:128442

    Article  CAS  PubMed  Google Scholar 

  • Borrelli RC et al (2002) Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem 50(22):6527–6533

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski K, Miotto D (2011) Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem 127(3):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Burns DT et al (2018) A critical review of the factors available for the identification and determination of mānuka honey. Food Anal Methods 11(6):1561–1567

    Article  Google Scholar 

  • Consonni R, Cagliani LR (2008) Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J Agric Food Chem 56(16):6873–6880

    Article  CAS  PubMed  Google Scholar 

  • Daher S, Gulacar FO (2010) Identification of new aromatic compounds in the New Zealand manuka honey by gas chromatography-mass spectrometry. E-J Chem 7(Suppl. 1):S7–S14

    Article  CAS  Google Scholar 

  • Daniels BJ et al (2016) Isolation, Structural Elucidation, and Synthesis of Lepteridine From Manuka (Leptospermum scoparium) Honey. J Agric Food Chem 64(24):5079–5084

    Article  CAS  PubMed  Google Scholar 

  • Dong H et al (2016) Adulteration identification of commercial honey with the C-4 sugar content of negative values by an elemental analyzer and liquid chromatography coupled to isotope ratio mass spectroscopy. J Agric Food Chem 64(16):3258–3265

    Article  CAS  PubMed  Google Scholar 

  • Fearnley L et al (2012) Compositional analysis of manuka honeys by high-resolution mass spectrometry: Identification of a manuka-enriched archetypal molecule. Food Chem 132(2):948–953

    Article  CAS  Google Scholar 

  • Girma A et al (2019) Antibacterial activity of varying UMF-graded Manuka honeys. PLoS One 14(10):e0224495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gras K et al (2014) Determination of furfurals in Manuka honey using piston-cylinder liquid-liquid extraction and gas chromatography. J Chromatogr A 1362:43–48

    Article  CAS  PubMed  Google Scholar 

  • The Guardian (2018) New Zealand brings first 'fake mānuka honey' prosecution

  • Inoue K et al (2005) Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J Sci Food Agric 85(5):872–878

    Article  CAS  Google Scholar 

  • Karasawa K et al (2017) Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC. Anal Chim Acta 954:151–158

    Article  CAS  PubMed  Google Scholar 

  • Karoui R (2018) Spectroscopic Technique: Fluorescence and Ultraviolet-Visible (UV-Vis) Spectroscopies. Elsevier, Modern techniques for food authentication, pp 219–252

    Google Scholar 

  • Kato Y et al (2012) Identification of a novel glycoside, leptosin, as a chemical marker of manuka honey. J Agric Food Chem 60(13):3418–3423

    Article  CAS  PubMed  Google Scholar 

  • Kato Y et al (2016) Competitive immunochromatographic assay for leptosperin as a plausible authentication marker of manuka honey. Food Chem 194:362–365

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh S et al (2019) Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem 272:66–75

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Myung S-W (2018) Determination of Fenpyroximate from four types of honey by liquid chromatography/tandem mass spectrometry. Bull Korean Chem Soc 39(1):65–70

    Article  CAS  Google Scholar 

  • Kovacs Z et al (2016) Water spectral pattern as holistic marker for water quality monitoring. Talanta 147:598–608

    Article  CAS  PubMed  Google Scholar 

  • Kuballa T, Brunner TS, Thongpanchang T, Walch SG, Lachenmeier DW (2018) Application of NMR for authentication of honey, beer and spices. Curr Opin Food Sci 19:57–62

    Article  Google Scholar 

  • Le Gresley A et al (2012) The application of high resolution diffusion NMR to the analysis of manuka honey. Food Chem 135(4):2879–2886

    Article  PubMed  CAS  Google Scholar 

  • Lin B et al (2017) Lepteridine as a unique fluorescent marker for the authentication of manuka honey. Food Chem 225:175–180

    Article  CAS  PubMed  Google Scholar 

  • Lin B et al (2020) Utility of the Leptospermum scoparium Compound Lepteridine as a Chemical Marker for Manuka Honey Authenticity. ACS Omega 5(15):8858–8866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locher C et al (2017) Authentication of honeys of different floral origins via high-performance thin-layer chromatographic fingerprinting. JPC-J Planar Chromatography-Modern TLC 30(1):57–62

    Article  CAS  Google Scholar 

  • McDonald CM et al (2018) Using chemical and DNA marker analysis to authenticate a high-value food, manuka honey. NPJ Sci Food 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  • MPI (2013). Options for defining monofloral manuka honey. MPI Discussion Paper No:2013/38. MPI New Zealand Government.

  • MPI (2014). Science and characterising mānuka honey. Current and future science to support a definition. MPI Technical Paper No:2014/23. MPI, New Zealand Government.

  • MPI (2017a). Criteria for identifying mānuka honey. MPI Technical Paper No: 2017/28. MPI, New Zealand Government.

  • MPI (2017b). Determination of four chemical characterisation compounds in honey by liquid chromatography tandem mass spectrometry (LCMS/MS). MPI Technical Paper No: 2017/30. MPI, New Zealand Government.

  • MPI (2017c). Multiplex qPCR for detection of Leptospermum scoparium DNA from pollen in Honey. MPI Technical Paper No 2017/31. MPI New Zealand Government.

  • Pappalardo M et al (2016) Rapid and reliable HPLC method for the simultaneous determination of dihydroxyacetone, methylglyoxal and 5-hydroxymethylfurfural in leptospermum honeys. PLoS One 11(11):e0167006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers KM et al (2014) The unique manuka effect: why New Zealand manuka honey fails the AOAC 998.12 C-4 sugar method. J Agric Food Chem 62(12):2615–2622

    Article  CAS  PubMed  Google Scholar 

  • Rueckriemen J et al (2017) Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium). Food Res. Int. 99(Part_1):469–475

    Article  CAS  Google Scholar 

  • Smith C et al (2021) Cataloguing the small RNA content of honey using next generation sequencing. Food Chem: Molecular Sci 2:100014

    CAS  Google Scholar 

  • Spiteri M et al (2017) Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem 217:766–772

    Article  CAS  PubMed  Google Scholar 

  • Stephens JM, Loomes KM, Braggins TJ, Bong J, Lin B, Prijic G (2017) Fluorescence: a novel method for determining manuka honey floral purity. Intech, pp 95–113

  • Suto M et al (2019) Heart-cutting two-dimensional liquid chromatography combined with isotope ratio mass spectrometry for the determination of stable carbon isotope ratios of gluconic acid in honey. J Chromatography A. 1608:460421

    Article  CAS  Google Scholar 

  • van de Kraats EB, Munćan J, Tsenkova RN (2019) Aquaphotomics–Origin, concept, applications and future perspectives. Substantia, pp 13–28

  • Wang Z et al (2021) Recent advances in analytical techniques for the detection of adulteration and authenticity of bee products–A review. Food Additives & Contaminants: Part A 38(4):533–549

    Article  CAS  Google Scholar 

  • Xue X et al (2013) 2-Acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup. J Agric Food Chem 61(31):7488–7493

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2020) "Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics. LWT. 132:109837

    Article  CAS  Google Scholar 

  • Yao L et al (2003) Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem 81(2):159–168

    Article  CAS  Google Scholar 

Download references


Dr M. A. Farag thanks the Alexander von Humboldt-foundation, Germany, for financial support.

Author information

Authors and Affiliations



NMH, Literaure survey, collection and writing the MS. GEA, Literature survey and collection. MAF, Review design and conceptualization, revising and editing the MS.

Corresponding authors

Correspondence to Nesrine M. Hegazi or Mohamed A. Farag.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegazi, N.M., Elghani, G.E.A. & Farag, M.A. The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. J Food Sci Technol 59, 2527–2534 (2022).

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: