Skip to main content
Log in

Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Five different tea varieties (white, green, oolong, black and pu-erh) were infused, drained and used for kombucha production. Antioxidant capacity, total phenolic content and bioaccessibility values were determined. Extractable, hydrolysable and bioaccessible fractions were used for antioxidant capacity and total phenolic content (TPC) and expressed as µmole TEAC/mL and mg GAE/100 mL, respectively. Antioxidant capacity and TPC were determined by Folin Ciocalteu’s, ABTS and CUPRAC methods. In vitro digestion enzymatic extraction was used to determine bioaccessible fractions. It has found that kombucha fermentation with the tea extracts caused to elevate antioxidant capacity, TPC, and bioaccessibility. The green tea kombucha had the highest antioxidant capacity (4153.23 μmole TEAC/mL) and bioaccessibility (50.18%). Therefore, it can be suggested as a good supplement with high nutritional value in kombucha production. In general, TPC content increased significantly. The extractable fractions and bioaccessibility values of the kombucha tea varieties increased due to the fermentation, while the hydrolysable fractions decreased. Antioxidant capacity in the extractable fractions of the green tea kombucha samples was measured to increase by ABTS and CUPRAC methods. Bioaccessibility values of pu-erh tea by ABTS and white tea by CUPRAC were found to increase by the kombucha production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amarasinghe H, Weerakkody NS, Waisundara VY (2018) Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation. Food Sci Nutr 6:659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ananingsih VK, Sharma A, Zhou W (2013) Green tea catechins during food processing and storage: a review on stability and detection. Food Res Int 50:469–479

    CAS  Google Scholar 

  • Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lethinen P, Bast A, Poutanen K, Haenen GRMM (2009) Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J Agric Food Chem 57:6148–6155

    CAS  PubMed  Google Scholar 

  • Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Gachhui R, Sil PC (2013) Effect of kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol 60:328–340

    CAS  PubMed  Google Scholar 

  • Bouayed J, Deußer H, Hoffmann L, Bohn T (2012) Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem 131:1466–1472

    CAS  Google Scholar 

  • Cardoso RR, Neto RO, dos Santos D’Almeida CT, do Nascimento TP, Pressetec CG, Azevedo L, Martino HSD, Camerone LC, Ferreirab SL, Barros FAR (2020) Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res Int 128:108782

    CAS  PubMed  Google Scholar 

  • Carloni P, Tiano L, Padella L, Bacchetti T, Customu C, Kay A, Damiani E (2013) Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res Int 53:900–908

    CAS  Google Scholar 

  • Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R (2016) Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol 220:63–72

    CAS  PubMed  Google Scholar 

  • De Filippis F, Troise AD, Vitaglione P, Ercolini D (2018) Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during kombucha tea fermentation. Food Microbiol 73:11–16

    PubMed  Google Scholar 

  • Değirmencioğlu N, Yıldız E, Sahan Y, Güldaş M, Gürbüz O (2019) Effect of fermentation time on bio-viability of kombucha tea. Acad Food J 17:200–211

    Google Scholar 

  • Etcheverry P, Grusak MA, Fleige LE (2012) Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front Physiol 3:317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gayoso L, Claerbout AS, Calvo MI, Cavero RY, Astiasarán I, Ansorena D (2016) Bioaccessibility of rutin, caffeic acid and rosmarinic acid: influence of the in vitro gastrointestinal digestion models. J Funct Foods 26:428–438

    CAS  Google Scholar 

  • Gullon B, Pintado ME, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M (2015) In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: changes in the antioxidant potential and bioactive compounds stability. J Funct Foods 19:617–628

    CAS  Google Scholar 

  • Ivanišova E, Meňhartovă K, Terenjeva M, Harangozo Ľ, Kántor A, Kačániová M (2019) The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J Food Sci Technol 57:1840–1846

    PubMed  Google Scholar 

  • Jakubczyk K, Kałdúnska J, Kochman J, Janda K (2020) Chemical profile and antioxidant activity of the kombucha beverage derived from White, green, black and red tea. Antioxidants 9:447

    CAS  PubMed Central  Google Scholar 

  • Jayabalan R, Marimuthu S, Swaminathan K (2007) Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem 102:392–398

    CAS  Google Scholar 

  • Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M, Swaminathan K (2008) Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem 109:227–234

    CAS  PubMed  Google Scholar 

  • Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M (2014) A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13:538–550

    PubMed  Google Scholar 

  • Kaewkod T, Bovonsombut S, Tragoolpua Y (2019) Efficacy of kombucha obtained from green, oolong, and black teas on inhibiton of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7:700

    CAS  PubMed Central  Google Scholar 

  • Ketnawa S, Suwannachot J, Ogawa Y (2019) In vitro gastrointestinal digestion of crisphead lettuce: changes in bioactive compounds and antioxidant potential. Food Chem 311:125885

    PubMed  Google Scholar 

  • Martínez Leal J, Suárez LV, Jayabalan R, Oros JH, Escalante-Abutro A (2018) A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J Food 16:390–399

    Google Scholar 

  • Muhialdin BJ, Osman FA, Muhamad R, Che Wan Sapawi CWNS, Anzian A, Voon WWY, Meor Hussein AS (2019) Effects of sugar sources and fermentation time on the properties of tea fungus (kombucha) beverage. Int Food Res J 26:481–487

    CAS  Google Scholar 

  • Pineda-Vadillo C, Nau F, Dubiard CG, Cheynier V, Meudec E, Sanz-Buenhombre M, Guadarrama A, Tóth T, Csavajda É, Hingyi H, Karakaya S, Sibakov J, Capozzi F, Bordoni A, Dupont D (2016) In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res Int 88(Part B):284–292

    CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    CAS  PubMed  Google Scholar 

  • Roda G, Marinello C, Grassi A, Picozzi C, Aldini G, Carini M, Regazzoni L (2019) Ripe and raw pu-erh tea: LC–MS profiling, antioxidant capacity and enzyme inhibition activities of aqueous and hydro-alcoholic extracts. Molecules 24:473

    PubMed Central  Google Scholar 

  • Shahbazi H, Hashemi Gahruie H, Golmakani MT, Eskandari MH, Movahedi M (2018) Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci Nutr 6:2568–2577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidi F, Peng H (2018) Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact 4:11–68

    Google Scholar 

  • Shahidi F, Yeo JD (2016) Insoluble-bound phenolics in food. Molecules 21:1216

    PubMed Central  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem 120:599–606

    CAS  Google Scholar 

  • Tu C, Tang S, Azi F, Hu W, Dong M (2019) Use of kombucha consortium to transform soy whey into a novel functional beverage. J Funct Foods 52:81–89

    CAS  Google Scholar 

  • Velićanski SA, Cvetkovic D, Markov S (2013) Characteristics of kombucha fermentation on medicinal herbs from Lamiaceae family. Rom Biotechnol Lett 18:8034–8042

    Google Scholar 

  • Velićanski SA, Cvetkovic DD, Markov SL, Tumbas-Saponjac VT, Vulic JJ (2014) Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technol Biotech 52:420–429

    Google Scholar 

  • Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P (2018) Understanding kombucha tea fermentation: a review. J Food Sci 83:580–588

    CAS  PubMed  Google Scholar 

  • Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Renard T, Rollan S, Taillandier P (2019) Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem 83:44–54

    CAS  Google Scholar 

  • Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard JP, Taillandier P, Beaufor S (2020) Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int J Food Microbiol 333:108778

    CAS  PubMed  Google Scholar 

  • Vitali D, Vedrina Dragojevic I, Sebecic B (2009) Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem 114:1462–1469

    CAS  Google Scholar 

  • Vitas JS, Popović LM, Čakarević Malbaša RV, Vukmanović SZ (2020) In vitro assessment of bioaccessibility of the antioxidant activity of kombucha beverages after gastric and intestinal digstion. Food Feed Res 47:33–41

    CAS  Google Scholar 

  • Wang GZ, Lin J, Ye XY, Cao ZL, Li YC (2015) The antimicrobial and antioxidant activities of kombucha. J Chin Inst Food Sci Tech 15:173–179

    CAS  Google Scholar 

  • Wang Y, Kan Z, Thompson HJ, Ling T, Ho C, Li D, Wan X (2019) Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J Agric Food Chem 67:5423–5436

    CAS  PubMed  Google Scholar 

  • Watawana MI, Jayawardena N, Waisundara VY (2018) Value-added tea (Camellia sinensis) as a functional food using the kombucha ‘tea fungus’. Chiang Mai J Sci 45:136–146

    CAS  Google Scholar 

  • Zhang L, Li N, Ma Z, Tu P (2011) Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD-ESI-MSn”. J Agric Food Chem 59:8754–8760

    CAS  PubMed  Google Scholar 

  • Zubaidah E, Ifadah RA, Afgani CA (2019) Changes in chemical characteristics of kombucha from various cultivars of snake fruit during fermentation. E&ES 230(1):012098

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcan Değirmencioğlu.

Ethics declarations

Conflict of interest

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Değirmencioğlu, N., Yıldız, E., Sahan, Y. et al. Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. J Food Sci Technol 58, 2304–2312 (2021). https://doi.org/10.1007/s13197-020-04741-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-020-04741-7

Keywords

Navigation