Skip to main content
Log in

Effect of almond genotypes on fatty acid composition, tocopherols and mineral contents and bioactive properties of sweet almond (Prunus amygdalus Batsch spp. dulce) kernel and oils

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Oil content of almond kernels ranged from 36.7% in the cultivar T12 to 79.0% in genotype T27. The major fatty acid in almond oil is oleic (62.43% in T7-76.34% in T4) followed by linoleic (13.97% in T4-29.55% in T3) and palmitic (4.97% in T2-7.51% inT3). The main tocopherol in almond oil was α-tocopherol (44.25 mg/100 g in T25-75.56 mg/100 g in T13) that was 44 folds higher than other tocopherols in the oil. Total tocopherol contents of almond oils ranged between 47.42 mg/100 g (T14) and 80.15 mg/100 g (T16). Among macro minerals, K was the highest (5238–14,683 mg/kg), followed by P (3475–11,123 mgkg), Ca (1798–5946 mg/kg), and Mg (2192–3591 mg/kg), whereas Na was the least (334–786 mg/kg) in almond kernel. The total polyphenol was observed in T16 (98.67 mg GAE/100 g), while the least was found in T24 (23.75 mg GAE/100 g). Antioxidant activity was high in T7 (91.18%) and low in T12 (44.59%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aşkın MA, Balta MF, Tekintaş FE, Kazankaya A, Balta F (2007) Fatty acid composition affected by kernel weight in almond (Prunus dulcis (Mill.) D.A. Webb.) genetic resources. J Food Comp Anal 20:7–12

    Article  Google Scholar 

  • Aslantas R, Güleryüz M, Turan M (2001) Some chemical contents of selected almond (Prunus amygdalus Batsch) types. In: Ak BE (ed). XI GREMPA Seminar on pistachios and almonds. CIHEAM, Zaragoza p 347–350 (Cahiers Options Méditerranéennes; n. 56)

  • Balz M, Schulte E, Their HP (1992) Trennung von tocopherolen und tocotrienolen durch HPLC. Fat Sci Technol 94:209–213

    CAS  Google Scholar 

  • Barbara G, Martını L, Monastra F (1994) Response of ferragnes and tuono almond cultivars to different environmental conditions in southern Italy. Acta Hort 373:99–103

    Google Scholar 

  • Čolić S, Zec G, Natić M, Fotirić-Akšić M (2019) Almond (Prunus dulcis) oil. In: Ramadan M (ed) Fruit oils: chemistry and functionality. Springer, Cham

    Google Scholar 

  • Esfahlan AJ, Jamei R (2012) Properties of biological activity of ten wild almond (Prunus amygdalus L.) species. Tr J Biol 36:201

    Google Scholar 

  • Fernandes GD, Gómez-Coca RB, Pérez-Camino MC, Moreda W, Barrera-Arellano D (2017) Chemical characterization of major and minor compounds of nut oils: almond, hazelnut, and pecan nut. J Chem 2017:2609549

    Article  Google Scholar 

  • Filsoof M, Mehran M, Farrohi F (1976) Determination and composition oil characteristics in Iranian almond, apricot and peach nuts. Fette Seifen Anstrich 78:117–150

    Article  Google Scholar 

  • Garcia-Pascual P, Mateos M, Carbonell V, Salazar DM (2003) Influence of storage conditions on the quality of shelled and roasted almonds. Biosys Eng 84:201–209

    Article  Google Scholar 

  • Gupta A, Sharma PC, Tilakratne BMKS, Verma AK (2012) Studies on physico-chemical characteristics and fatty acid composition of wild apricot [Prunus armeniaca Linn.] kernel oil. Ind J Nat Prod Res 3:366–370

    Google Scholar 

  • Izaddost M, Imani A, Piri S, Bagiri AM (2013) Oil content, major fatty acids composition, α-tocopherol and nut characteristics of almond at time of harvest. J Basic Appl Sci Res 3:201–205

    Google Scholar 

  • Karatay H, Şahin A, Yılmaz Ö, Aslan A (2014) Major fatty acids composition of 32 almond (Prunus dulcis (Mill.) D.A. Webb.) genotypes distributed in east southeast of Anatolia. Turk J Biochem 39:307–316

    Article  CAS  Google Scholar 

  • Keser S, Demir E, Yılmaz O (2014) Phytochemicals and antioxidant activity of the almond kernel from Turkey. J Chem Soc Pakistan 36(3):534–541

    CAS  Google Scholar 

  • Kırbaşlar FG, Türker G, Özsoy-Güneş Z, Ünal M, Dülger B, Ertaş E, Kızılkaya B (2012) Evaluation of fatty acid composition, antioxidant and antimicrobial activity, mineral composition and calories values of some nuts and seeds from Turkey. Rec Nat Prod 6:339–349

    Google Scholar 

  • Kodad O (2017) A new late blooming almond cultivar. FAO-CIHEAM-Nucis-Newsletter, Number 17, May 2017

  • Kodad O, Socias I, Company R (2008) Variability of oil content and of major fatty acid composition in almond (Prunus amydalus Batsch) and its relationship with kernel quality. J Agric Food Chem 56:4096–4101

    Article  CAS  Google Scholar 

  • Kodad O, Socias Rafel, Alonso JM (2018) Genotypic and environmental effects on tocopherol content in almond. Antioxidants (Basel) 7(1):6

    Article  Google Scholar 

  • Kornsteiner M, Wagner KH, Elmadfa I (2006) Tocopherols and total phenolics in 10 different nut types. Food Chem 98:381–387

    Article  CAS  Google Scholar 

  • Lee SK, Mbwambo ZH, Chung HS, Luyengi L, Games EJC, Mehta RG (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1:35–46

    CAS  PubMed  Google Scholar 

  • Lopez Ortiz CM, Prats Moya MS, Berenguer Navarro V (2006) A rapid chromatographic method for simultaneous determination of β-sitositerol and tocopherol homologues in vegetable oils. J Food Compos Anal 19:141–149

    Article  CAS  Google Scholar 

  • Maguire LS, O’Sullivan SM, Galvin K, O’Connor TP, O’Brien NM (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55:171–178

    Article  CAS  Google Scholar 

  • Martins AN, Gomes C, Ferreira L (2000) Almond production and characteristics in Algarve, Portugal. Nucis Newsl 9:6–9

    Google Scholar 

  • Matthäus B, Özcan MM (2006) Quantitation of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus Chia) growing wild in Turkey. J Agric Food Chem 54(20):7667–7671

    Article  Google Scholar 

  • Mehran M, Filsoof M (1974) Characteristics of Iranian almond nuts and oils. J Am Oil Chem Soc 51:433–434

    Article  CAS  Google Scholar 

  • Moayedi A, Rezaei K, Moini S, Keshavarz B (2011) Chemical composition of oils from several wild almond species. J Am Oil Chem Soc 88:503–508

    Article  CAS  Google Scholar 

  • Nanos GD, Kazantzisb I, Kefalas P, Petrakisb C, Stavroulakisc G (2002) Irrigation and harvest time affect almond kernel quality and composition. Sci Hort 96:249–256

    Article  CAS  Google Scholar 

  • Özcan MM, Ünver A, Erkan E, Arslan D (2011) Characteristics of some almond kernel and oils. Sci Hort 127:330–333

    Article  Google Scholar 

  • Piscopo A, Romeo FW, Petrovicova B, Poiana M (2010) Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) D.A. Webb). Sci Hortic 125:41–46

    Article  CAS  Google Scholar 

  • Püskülcü H, Ikiz F (1989) Introdiction to statistic. Bilgehan Presss, Bornova, p 333

    Google Scholar 

  • Rabadan A, Alvarez-Orti M, Gomez R, de Miguel C, Pardo J (2018) Influence of genotype and crop year in the chemometrics of almond and pistachio oils. J Sci Food Agric 98:2402–2410

    Article  CAS  Google Scholar 

  • Rabadan A, Alvarez-Orti M, Pardo JE (2019) A comparison of the effect of genotype and weather conditions on the nutritional composition of most important commercial nuts. Sci Hort 244:218–224

    Article  CAS  Google Scholar 

  • Rabadán A, Álvarez-Ortí M, Gómez R, Pardo-Giménez A, Pardo JE (2017) Suitability of Spanish almond cultivars for the industrial production of almond oil and defatted flour. Sci Hort 225:539–546

    Article  Google Scholar 

  • Sathe SK, Seeram NP, Kshırsagar HH, Heber D, Lapsley KA (2008) Fatty acid composition of California grown almonds. Food Chem 73:607–614

    Google Scholar 

  • Saura Calixto F, Bauza M, Martinez de Toda F, Argamenteria A (1981) Amino acids, sugars and inorganic elements in the sweet almond (Prunus amygdalus). J Agr Food Chem 29:509–511

    Article  Google Scholar 

  • Schirra M, Mulas M, Nieddu G, Virdis F (1994) Mineral content in Texas almonds during fruit growth and ripening. Acta Hort 373:207–214

    Article  CAS  Google Scholar 

  • Skujins S (1998) Handbook for ICP-AES (Varıan-Vista). A short guide to vista series ICP- AES operation. Varian Int.

  • Vicente-Villardon JL (2010) MULTBIPLOT: a package for multivariate analysis using biplots. Department of Statistics, University of Salamanca, Salamanca

    Google Scholar 

  • Welna M, Klimpel M, Zyrnicki W (2008) Investigation of major and trace elements and their distributions between lipid and non-lipid fractions in Brazil nuts by inductively coupled plasma atomic optical spectrometry. Food Chem 111:1012–1015

    Article  CAS  Google Scholar 

  • Yan W, Fregeau-Reid J (2008) Breeding line selection based on multiple traits. Crop Sci 48(2):417–423

    Article  Google Scholar 

  • Yıldız H, Atli HS, Tosun M, Ercişli S (2014) Antioxidant activity, total phenolic and flavonoid content of some local and cultivated almonds (Prunus dulcis L.). Oxid Commun 37(3):733–740

    Google Scholar 

  • Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK (2004) Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J Agric Food Chem 52:5907–5913

    Article  CAS  Google Scholar 

  • Zhu Y, Taylor C, Sommer K, Wilkinson K, Wirthensohn M (2015) Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem 173:821–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. (RG-1439-080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Musa Özcan or Isam A. Mohamed Ahmed.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, M.M., Matthäus, B., Aljuhaimi, F. et al. Effect of almond genotypes on fatty acid composition, tocopherols and mineral contents and bioactive properties of sweet almond (Prunus amygdalus Batsch spp. dulce) kernel and oils. J Food Sci Technol 57, 4182–4192 (2020). https://doi.org/10.1007/s13197-020-04456-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-020-04456-9

Keywords

Navigation