Phenolic profile and antioxidant capacity of Pithecellobium dulce (Roxb) Benth: a review

Abstract

Pithecellobium dulce (Roxb) Benth (P. dulce), known as “guamúchil”, is a tree native to the American continent. Various parts of the tree are used in traditional medicine, primarily for treating gastrointestinal disorders. The phenolic compounds and antioxidant capacity of this plant are largely responsible for the beneficial health effects attributed to it. A number of authors have studied the antioxidant capacity and phenolic compounds of the aril, seed, leaf and root of P. dulce using various methodologies, which can differ considerably in variables such as environmental factors, type of drying, temperature, the way the sample is stored, and the use of different solvents in the various extraction methods. Even methods of quantification by HPLC vary tremendously. This paper summarizes the existing research carried out to date on determining the phenolic profile and antioxidant capacity of P. dulce.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adeniyi A, Asase A, Ekpe PK et al (2018) Ethnobotanical study of medicinal plants from Ghana; confirmation of ethnobotanical uses, and review of biological and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. J Herb Med 14:76–87. https://doi.org/10.1016/j.hermed.2018.02.001

    Article  Google Scholar 

  2. Akar Z, Küçük M, Doğan H (2017) A new colorimetric DPPH scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem 32:640–647. https://doi.org/10.1080/14756366.2017.1284068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Alonso-Castro AJ, Domínguez F, Maldonado-Miranda JJ et al (2017) Use of medicinal plants by health professionals in Mexico. J Ethnopharmacol 198:81–86. https://doi.org/10.1016/j.jep.2016.12.038

    Article  PubMed  Google Scholar 

  4. Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115:785–788. https://doi.org/10.1016/j.foodchem.2008.12.005

    Article  CAS  Google Scholar 

  5. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6:42. https://doi.org/10.3390/plants6040042

    Article  PubMed Central  CAS  Google Scholar 

  6. Amorati R, Valgimigli L (2014) Advantages and limitations of common testing methods for antioxidants. Free Radic Res 49:633–649. https://doi.org/10.3109/10715762.2014.996146

    Article  CAS  Google Scholar 

  7. Annegowda HV, Bhat R, Min-tze L (2012) Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. J Food Sci Technol 49:510–514. https://doi.org/10.1007/s13197-011-0435-8

    Article  PubMed  CAS  Google Scholar 

  8. Apak R, Güçlü K, Demirata B et al (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547. https://doi.org/10.3390/12071496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Arceusz A, Wesolowski M, Konieczynski P (2013) Methods for extraction and determination of phenolic acids in medicinal plants: a review. Nat Prod Commun 8:1821–1829. https://doi.org/10.1177/1934578X1300801238

    Article  PubMed  CAS  Google Scholar 

  10. Ashraf A, Bhatti IA, Sultana B, Jamil A (2016) Study of variations in the extraction yield, phenolic contents and antioxidant activities of the bark of F. religiosa as a function of extraction procedure. J Basic Appl Sci 12:8–13

    Article  CAS  Google Scholar 

  11. Augusto C, Dillenburg A, Edward R, Teixeira H (2011) Use of multivariate statistical techniques to optimize the simultaneous separation of 13 phenolic compounds from extra-virgin olive oil by capillary electrophoresis. Talanta 83:1181–1187. https://doi.org/10.1016/j.talanta.2010.07.013

    Article  CAS  Google Scholar 

  12. Bachir BM, Richard G, Meziant L et al (2016) Effects of sun-drying on physicochemical characteristics, phenolic composition and in vitro antioxidant activity of dark fi g varieties. J Food Process Preserv 41:e13164. https://doi.org/10.1111/jfpp.13164

    Article  CAS  Google Scholar 

  13. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/ABIO.1996.0292

    Article  CAS  Google Scholar 

  14. Bhati D, Jain S (2016) Nutrition potential of uncultivated fruits grown in udaipur district of Rajasthan. Bioscan 11:15–18

    Google Scholar 

  15. Biochem A, Pisoschi AM, Negulescu GP (2011) Biochemistry & analytical biochemistry methods for total antioxidant activity determination: a review. Biochem Anal Biochem 1:1–10. https://doi.org/10.4172/2161-1009.1000106

    Article  Google Scholar 

  16. Cheema J, Yadav K, Sharma N et al (2017) Nutritional quality characteristics of different wild and underutilized fruits of Terai Region, Uttarakhand (India). Int J Fruit Sci 17:72–81. https://doi.org/10.1080/15538362.2016.1160271

    Article  Google Scholar 

  17. Chutipaijit S, Sutjaritvorakul T (2018) Comparative study of total phenolic compounds, flavonoids and antioxidant capacities in pigmented and non-pigmented rice of indica rice varieties. J Food Meas Charact 12:781–788. https://doi.org/10.1007/s11694-017-9692-1

    Article  Google Scholar 

  18. CONABIO (2013) Pithecellobium dulce (Roxb.) Benth. Mimosaceae. In: Com. Nac. para el Conoc. y Uso la Biodivers. http://www.conabio.gob.mx/conocimiento/info_especies/arboles/doctos/45-legum38m.pdf

  19. Cong-Cong X, Bing W, Yi-Qiong P et al (2017) Advances in extraction and analysis of phenolic compounds from plant materials. Chin J Nat Med 15:721–731

    Google Scholar 

  20. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. https://doi.org/10.3390/molecules15107313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. De Souza MM, Da Silva B, Costa CSB, Badiale-Furlong E (2018) Free phenolic compounds extraction from Brazilian halophytes, soybean and rice bran by ultrasound-assisted and orbital shaker methods. An Acad Bras Cienc 90:3363–3372. https://doi.org/10.1590/0001-3765201820170745

    Article  PubMed  CAS  Google Scholar 

  22. Drinić Z, Vidović S, Vladić J et al (2018) Effect of extraction solvent on total polyphenols content and antioxidant activity of industrial hemp (Cannabis sativa L.). Lek Sirovine 38:17–21

    Article  Google Scholar 

  23. Elboughdiri N (2019) Effect of time, solvent-solid ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from olive leaves. Eng Technol Appl Sci Res 8:2805–2808. https://doi.org/10.13140/RG.2.2.26002.81601

    Article  Google Scholar 

  24. Fuchs B, Süß R, Teuber K et al (2011) Lipid analysis by thin-layer chromatography—a review of the current state. J Chromatogr A 1218:2754–2774. https://doi.org/10.1016/j.chroma.2010.11.066

    Article  PubMed  CAS  Google Scholar 

  25. Gallegos-Zurita M (2016) Las plantas medicinales: principal alternativa para el cuidado de la salud, en la población rural de Babahoyo, Ecuador. An la Fac Med 77:327–332

    Article  Google Scholar 

  26. Gunel Z, Tontul İ, Dincer C et al (2018) Influence of microwave, the combined microwave/hot air and only hot air roasting on the formation of heat-induced contaminants of carob powders. Food Addit Contam 35:2332–2339. https://doi.org/10.1080/19440049.2018.1544720

    Article  CAS  Google Scholar 

  27. Han J-H, Lee H-J, Cho MR et al (2014) Total antioxidant capacity of the Korean diet. Nutr Res Pract 8:183–191. https://doi.org/10.4162/nrp.2014.8.2.183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jibril FI, Bakar A, Hilmi M, Manivannan L (2019) Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bull Natl Res Cent 43:4

    Article  Google Scholar 

  29. Kadam D, Palamthodi S, Lele SS (2018) LC–ESI-Q-TOF–MS/MS profiling and antioxidant activity of phenolics from L. Sativum seedcake. J Food Sci Technol 55:1154–1163. https://doi.org/10.1007/s13197-017-3031-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kafkas NE, Kosar M, Oz AT, Mitchell AE (2018) Advanced analytical methods for phenolics in fruits. J Food Qual 2018:1–6. https://doi.org/10.1155/2018/3836064

    Article  CAS  Google Scholar 

  31. Kalavani R, Banu RS, Jeyanthi KA et al (2016) Evaluation of anti-inflammatory and antibacterial activity of Pithecellobium dulce (Benth) extract. Biotechnol Res 2:148–154

    Google Scholar 

  32. Karaman S, Toker OS, Çam M et al (2014) Bioactive and physicochemical properties of persimmon as affected by drying methods. Dry Technol 32:258–267. https://doi.org/10.1080/07373937.2013.821480

    Article  CAS  Google Scholar 

  33. Katekhaye SD, Kale MS (2012) Antioxidant and free radical scavenging activity of Pithecellobium dulce (Roxb.) Benth wood bark and leaves. Free Radic Antioxid 2:47–57. https://doi.org/10.5530/ax.2012.3.7

    Article  CAS  Google Scholar 

  34. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422. https://doi.org/10.1007/s13197-011-0251-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khan BM, Liu Y (2018) High speed counter current chromatography: overview of solvent-system and elution-mode. J Liq Chromatogr Relat Technol 41:629–636. https://doi.org/10.1080/10826076.2018.1499528

    Article  CAS  Google Scholar 

  36. Khanzada SK, Khanzada AK, Shaikh W, Ali SA (2013) Phytochemical studies on Pithecellobium dulce Benth. A medicinal plant of Sindh, Pakistan. Pak J Bot 45:557–561

    Google Scholar 

  37. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for Analysis of Plant Phenolic Compounds. Molecules 18:2328–2375. https://doi.org/10.3390/molecules18022328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim J, Chang S, Kim I et al (2007) Design of optimal solvent for extraction of bio-active ingredients from mulberry leaves. Biochem Eng J 37:271–278. https://doi.org/10.1016/j.bej.2007.05.006

    Article  CAS  Google Scholar 

  39. Kivilompolo M, Ob V, Hyötyläinen T (2007) Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Anal Bioanal Chem 388:881–887. https://doi.org/10.1007/s00216-007-1298-8

    Article  PubMed  CAS  Google Scholar 

  40. Krishnaveni M, Lavanya K, Magesh P et al (2014) Free radical scavenging activity of selected plants. World J Pharm Pharm Sci 3:765–775

    Google Scholar 

  41. Kubola J, Siriamornpun S, Meeso N (2011) Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chem 126:972–981. https://doi.org/10.1016/J.FOODCHEM.2010.11.104

    Article  CAS  Google Scholar 

  42. Kulkarni KV, Jamakhandi VR (2018) Medicinal uses of Pithecellobium dulce and its health benefits. J Pharmacogn Phytochem 7:700–704

    CAS  Google Scholar 

  43. Kumar M, Nehra K, Duhan J (2013) Phytochemical analysis and antimicrobial efficacy of leaf extracts of Pithecellobium dulce. Asian J Pharm Clin Res 6:70–76

    Google Scholar 

  44. Kumari S (2017) Evaluation of phytochemical analysis and antioxidant and antifungal activity of Pithecellobium dulce leaves’ extract. Asian J Pharm Clin Res 10:370. https://doi.org/10.22159/ajpcr.2017.v10i1.15576

    Article  CAS  Google Scholar 

  45. Kuri-García A, Chávez-Servín JL, Guzmán-Maldonado SH (2017) Phenolic profile and antioxidant capacity of Cnidoscolus chayamansa and Cnidoscolus aconitifolius: a review. J Med Plants Res 11:713–727. https://doi.org/10.5897/JMPR2017.6512

    Article  Google Scholar 

  46. Le Pham T, Van Muoi N (2018) Ultrasound-assisted extraction of phenolic compounds from polygonum multiflorum thunb. Roots. Bulg J Agric Sci 24:229–235

    Google Scholar 

  47. Lee C, Kim S-Y, Eum S et al (2019) Ethnobotanical study on medicinal plants used by local Van Kieu ethnic people of Bac Huong Hoa nature reserve, Vietnam. J Ethnopharmacol 231:283–294. https://doi.org/10.1016/J.JEP.2018.11.006

    Article  PubMed  Google Scholar 

  48. Lewoyehu M, Amare M (2019) Comparative evaluation of analytical methods for determining the antioxidant activities of honey: a review. Cogent Food Agric 5:16850509. https://doi.org/10.1080/23311932.2019.1685059

    Article  CAS  Google Scholar 

  49. Li Z, Shi W, Cheng L et al (2018) Screening of the phenolic profile and their antioxidative activities of methanol extracts of Myrica rubra fruits, leaves and bark. J Food Meas Charact 12:128–134. https://doi.org/10.1007/s11694-017-9623-1

    Article  Google Scholar 

  50. López-Angulo G, Montes-Avila J, Sánchez-Ximello L et al (2018) Anthocyanins of Pithecellobium dulce (Roxb.) Benth. fruit associated with high antioxidant and α-glucosidase inhibitory activities. Plant Foods Hum Nutr 73:308–313. https://doi.org/10.1007/s11130-018-0693-y

    Article  PubMed  CAS  Google Scholar 

  51. Lucas-González R, Fernández-lópez J, Pérez-álvarez JÁ, Viuda- M (2018) Effect of particle size on phytochemical composition and antioxidant properties of two persimmon flours from. J Sci Food Agric 98:504–510. https://doi.org/10.1002/jsfa.8487

    Article  PubMed  CAS  Google Scholar 

  52. Manna P, Bhattacharyya S, Das J et al (2011) Phytomedicinal role of pithecellobium dulce against ccl4-mediated hepatic oxidative impairments and necrotic cell death. Evid Based Complement Altern Med 2011:1–17. https://doi.org/10.1093/ecam/neq065

    Article  Google Scholar 

  53. Mccullum R, Mccluskey A, Vuong Q (2019) Heliyon effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon 5:e03044. https://doi.org/10.1016/j.heliyon.2019.e03044

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mediani A, Abas F, Tan CP, Khatib A (2014) Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 3:358–370. https://doi.org/10.3390/antiox3020358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Megala J, Geetha A (2010) Free radical-scavenging and H+, K+-ATPase inhibition activities of Pithecellobium dulce. Food Chem 121:1120–1128. https://doi.org/10.1016/j.foodchem.2010.01.059

    Article  CAS  Google Scholar 

  56. Mokrani A, Madani K (2016) Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol 162:68–76. https://doi.org/10.1016/j.seppur.2016.01.043

    Article  CAS  Google Scholar 

  57. Monroy R, Colín H (2004) El guamúchil Pithecellobium dulce (Roxb.) Benth, un ejemplo de uso múltiple. Madera y Bosques 10:35–53

    Article  Google Scholar 

  58. Moo-huchin VM, Estrada-mota I, Estrada-león R et al (2014) Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem 152:508–515. https://doi.org/10.1016/j.foodchem.2013.12.013

    Article  PubMed  CAS  Google Scholar 

  59. Nagmoti DM, Juvekar AR (2013) In vitro inhibitory effects of Pithecellobium dulce (Roxb.) Benth. seeds on intestinal α -glucosidase and pancreatic α -amylase. J Biochem Technol 4:616–621

    CAS  Google Scholar 

  60. Nagmoti DM, Khatri DK, Juvekar PR, Juvekar AR (2012) Antioxidant activity and free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic Antioxid 2:37–43. https://doi.org/10.5530/ax.2012.2.7

    Article  CAS  Google Scholar 

  61. Nayak B, Dahmoune F, Moussi K, Remini H (2015) Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from citrus sinensis peels. Food Chem 187:507–516. https://doi.org/10.1016/j.foodchem.2015.04.081

    Article  PubMed  CAS  Google Scholar 

  62. Ojha K, Dubey S, Chandrakar J et al (2018) A review on different methods of determination of antioxidant activity assay of herbal plants. Res J Life Sci Bioinform Pharm Chem Sci 4:707–730. https://doi.org/10.26479/2018.0406.56

    Article  CAS  Google Scholar 

  63. Pal PB, Pal S, Maná P, Sil PC (2012) Traditional extract of Pithecellobium dulce fruits protects mice against CCl4 induced renal oxidative impairments and necrotic cell death. Pathophysiology 19:101–114. https://doi.org/10.1016/J.PATHOPHYS.2012.02.001

    Article  PubMed  CAS  Google Scholar 

  64. Parrotta JA (1991) Pithecellobium dulce (Roxb.) Benth. Guamuchil. In: Bioecología de Arboles Nativos y Exóticos de Puerto Rico y las Indias Occidentales

  65. Pinelo M, Rubilar M, Jerez M et al (2005) Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J Agric Food Chem 53:2111–2117. https://doi.org/10.1021/jf0488110

    Article  PubMed  CAS  Google Scholar 

  66. Pío-León JF, Díaz-Camacho S, Montes-Avila J et al (2013) Nutritional and nutraceutical characteristics of white and red Pithecellobium dulce (Roxb.) Benth fruits. Fruits 68:397–408. https://doi.org/10.1051/fruits/2013084

    Article  CAS  Google Scholar 

  67. Ponmozhi P, Geetha M, Kumar SM, Devi SP (2011) Extraction of anthocyanin and analysing its antioxidant properties from pithecellobium dulce fruit pericarp. Asian J Pharm Clin Res 4:41–45

    Google Scholar 

  68. Poongodi T, Hemalatha R (2015) In vitro cytotoxicity, phytochemistry and GC-MS analysis of pithecellobium dulce leaves. World J Pharm Pharm Sci 4:1266–1276

    Google Scholar 

  69. Porras-Loaiza A, López-Malo A (2009) Importancia de los grupos fenólicos en los alimentos. TSIA 3:121–134

    Google Scholar 

  70. Predescu NC, Papuc C, Nicorescu V et al (2016) The influence of solid-to-solvent ratio and extraction method on total phenolic content, flavonoid content and antioxidant properties of some ethanolic plant extracts. Rev Chim 67:1922–1927

    CAS  Google Scholar 

  71. Preethi S, Saral MA (2014) GC-MS analysis of microwave assisted ethanolic extract of Pithecellobium dulce. Malaya J Biosci 1:242–247

    CAS  Google Scholar 

  72. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302. https://doi.org/10.1021/jf0502698

    Article  PubMed  CAS  Google Scholar 

  73. Qiu L, Zhang M, Wang Y, Liu Y (2018) Physicochemical and nutritional properties of wasabi (Eutrema yunnanense) dried by four different drying methods. Dry Technol. https://doi.org/10.1080/07373937.2018.1458318

    Article  Google Scholar 

  74. Que F, Mao L, Fang X, Wu T (2008) Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int J Food Sci Technol 43:1195–1201. https://doi.org/10.1111/j.1365-2621.2007.01590.x

    Article  CAS  Google Scholar 

  75. Rahman Nur FA, Shamsudin R, Ismail A et al (2018) Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innov Food Sci Emerg Technol 50:217–225

    Article  CAS  Google Scholar 

  76. Rajha HN, El DN, Hobaika Z et al (2014) Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food Nutr Sci 2014:397–409

    Google Scholar 

  77. Raju K, Jagadeeshwar K (2014) Phytochemical investigation and hepatoprotective activity of ripe fruits of Pithecellobium dulce in albino rats. Sch Acad J Pharm 3:449–454

    Google Scholar 

  78. Rao GN (2013) Physico-chemical, mineral, amino acid composition, in vitro antioxidant activity and sorption isotherm of Pithecellobium dulce L. Seed Protein Flour. J Food Pharm Sci 1:74–80. https://doi.org/10.14499/JFPS

    Article  Google Scholar 

  79. Rao GN, Nagender A, Satyanarayana A, Rao DG (2011) Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder. J Food Sci Technol 48:90–95. https://doi.org/10.1007/s13197-010-0135-9

    Article  PubMed  CAS  Google Scholar 

  80. Rao BG, Samyuktha P, Ramadevi D, Battu H (2018) Review of literature: phyto pharmacological studies on pithecellobium dulce. J Glob Trends Pharm Sci 9:4797–4807

    CAS  Google Scholar 

  81. Reddy CVK, Sreeramulu D, Raghunath M (2010) Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res Int 43:285–288. https://doi.org/10.1016/j.foodres.2009.10.006

    Article  CAS  Google Scholar 

  82. Rezende WP, Borges LL, Santos DL et al (2015) Effect of environmental factors on phenolic compounds in leaves of modern chemistry & applications. Mod Chem Appl Rezende. https://doi.org/10.4172/2329-6798.1000157

    Article  Google Scholar 

  83. Samee W, Engkalohakul M, Nebbua N et al (2006) Correlation analysis between total acid, total phenolic and ascorbic acid contents in fruit extracts and their antioxidant activities. Thai Pharm Heal Sci J 1:196–203

    Google Scholar 

  84. Sandahl M, Turner C (2016) Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation. J Sep Sci 39:3123–3129. https://doi.org/10.1002/jssc.201600169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Schaich KM, Tian X, Xie J (2015) Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays”. J Funct Foods 18:782–796. https://doi.org/10.1016/j.jff.2015.05.024

    Article  Google Scholar 

  86. Sivakumar PR, Srikanth AP (2018) Pithecellobium dulce extracts as corrosion inhibitor for mild steel in acid medium. Der Pharma Chem 10:14–20

    CAS  Google Scholar 

  87. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295. https://doi.org/10.1002/jssc.200700261

    Article  PubMed  CAS  Google Scholar 

  88. Suganthi A, Josephine RM (2018) Evaluating the chemical analysis profile of some lesser known edible fruits. Indo Am J Pharm Sci 05:815–820. https://doi.org/10.5281/zenodo.1174321

    Article  CAS  Google Scholar 

  89. Sugumaran M, Vetrichelvan T, Venkapayya D (2006) Studies on some Pharmacognostic profiles of Pithecell’obium dulce Benth. Leaves (Leguminosae). Anc Sci Life 25:92–100

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Sugumaran M, Vetrichelvan T, Darlin Quine S (2008) Free Radical scavenging activity of folklore: Pithecellobium dulce Benth. Leaves. Ethnobot Leafl 12:446–451

    Google Scholar 

  91. Sulaiman ISC, Basri M, Masoumi HRF et al (2017) Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J 11:1–11. https://doi.org/10.1186/s13065-017-0285-1

    Article  CAS  Google Scholar 

  92. Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of Berry fruits: a review. Plant Foods Hum Nutr 63:147–153. https://doi.org/10.1007/s11130-008-0097-5

    Article  PubMed  CAS  Google Scholar 

  93. Tanase C, Coșarcă S, Muntean D-L (2019) A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24:1182. https://doi.org/10.3390/molecules24061182

    Article  PubMed Central  CAS  Google Scholar 

  94. Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  95. Tzima K, Brunton NP, Rai DK (2018) Qualitative and quantitative analysis of polyphenols in Lamiaceae plants—a review. Plants 7:1–30. https://doi.org/10.3390/plants7020025

    Article  CAS  Google Scholar 

  96. Valduga AT, Gonçalves IL, Magri E, Delalibera Finzer JR (2019) Chemistry, pharmacology and new trends in traditional functional and medicinal beverages. Food Res Int 120:478–503. https://doi.org/10.1016/J.FOODRES.2018.10.091

    Article  PubMed  CAS  Google Scholar 

  97. Vanitha V, Manikandan K (2016) Bio-activity guided determination of active compounds in the leaves of pithecellobium dulce. Rasayan J Chem 9:471–477

    CAS  Google Scholar 

  98. Wall-Medrano A, González-aguilar GA, Loarca-piña GF et al (2016) Ripening of Pithecellobium dulce (Roxb.) Benth. [Guamúchil] fruit: physicochemical, chemical and antioxidant changes. Plant Foods Hum Nutr 71:396–401. https://doi.org/10.1007/s11130-016-0575-0

    Article  PubMed  CAS  Google Scholar 

  99. Wojdyło A, Figiel A, Legua P et al (2016) Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem 207:170–179. https://doi.org/10.1016/j.foodchem.2016.03.099

    Article  PubMed  CAS  Google Scholar 

  100. Xu J, Wang W, Li Y (2019) Dough properties, bread quality, and associated interactions with added phenolic compounds: a review. J Funct Foods 52:629–639. https://doi.org/10.1016/J.JFF.2018.11.052

    Article  CAS  Google Scholar 

  101. Złotek U, Gawlik-dziki U, Dziki D et al (2019) Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. J Chem 2019:2–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The review was supported by the Fund for Strengthening Research at the Autonomous University of Queretaro under Grant [Numer FOFI-UAQ: FNN-2018-08]. Special thanks to the National Council of Science and Technology of Mexico (CONACYT) for the support of A. V.-M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Luis Chávez-Servín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vargas-Madriz, Á.F., Kuri-García, A., Vargas-Madriz, H. et al. Phenolic profile and antioxidant capacity of Pithecellobium dulce (Roxb) Benth: a review. J Food Sci Technol 57, 4316–4336 (2020). https://doi.org/10.1007/s13197-020-04453-y

Download citation

Keywords

  • Pithecellobium dulce
  • Guamúchil
  • Phenolic compounds
  • Antioxidant capacity
  • Phenolic profile